Home Technology Modeling of hot deformation behavior with dynamic recrystallization in TC4 titanium alloy
Article
Licensed
Unlicensed Requires Authentication

Modeling of hot deformation behavior with dynamic recrystallization in TC4 titanium alloy

  • Chun Lei Pu , Guo Hui Zhu , Ying Long Tao and Shu Bao Yang
Published/Copyright: August 7, 2015

Abstract

Isothermal compression tests of TC4 titanium alloy over a temperature range of 973 K to 1123 K and strain rate range of 0.1 s−1 to 30 s−1 showed that dynamic recrystallization (DRX) occurred under all deformation conditions. To model the flow stress taking into account the DRX behavior, the model was divided into two stages by the critical strain of DRX (∊c) calculated using the Poliak–Jonas method. The flow stress in the first stage with no DRX (∊ ≤ ∊c) was described by the Estrin–Mecking equation. The flow stress in the second stage with DRX (∊ > ∊c) was expressed by the interaction of work hardening, dynamic recovery, and DRX. The function relationship between the principal parameters in the flow stress model and the deformation conditions described by the Zener–Hollomon parameter was also analyzed. The prediction of the constructed flow stress model agreed well with the experimental results.


* Correspondence address, Prof. Guo Hui Zhu, School of Materials Science & Engineering, University of Science and Technology Beijing, Haidian District, 100083 Beijing City, P.R. China, Tel.: +861062332300, Fax: +861062332989, E-mail:

References

[1] C.M. Sellars , W.J.M.G.Tegart: Mem. Sci. Rev. Met9 (1966) 63.Search in Google Scholar

[2] G. Ji , Q.Li, L.Li: Mater. Sci. Eng., A586 (2013) 197. 10.1016/j.msea.2013.07.083.Search in Google Scholar

[3] S. Solhjoo : Mater. Sci. Eng., A552 (2012) 566. 10.1016/j.msea.2013.07.083.Search in Google Scholar

[4] Y.C. Lin , X.M.Chen: Mater. Des.32 (2011) 1733. 10.1016/j.msea.2013.07.083.Search in Google Scholar

[5] E.I. Poliak , J.J.Jonas: Acta Mater.44 (1996) 127. 10.1016/1359-6454(95)00146-7.Search in Google Scholar

[6] H. Mirzadeh , A.Najafizadeh: Mater. Des.31 (2010) 1174. 10.1016/j.matdes.2009.09.038.Search in Google Scholar

[7] I. Mejía , A.Bedolla-Jacuinde, C.Maldonado, J.M.Cabrera: Mater. Sci. Eng., A528 (2011) 4133. 10.1016/j.msea.2011.01.102.Search in Google Scholar

[8] J.J. Jonas , X.Quelennec, L.Jiang, É.Martin: Acta Mater.57 (2009) 2748. 10.1016/j.actamat.2009.02.033.Search in Google Scholar

[9] R. Ebrahimi , S.Solhjoo: Int. J. ISSI4 (2007) 24.Search in Google Scholar

[10] S. Solhjoo : Mater. Des.31 (2010) 1360. 10.1016/j.matdes.2009.09.001.Search in Google Scholar

[11] S. Solhjoo : Mater. Des.54 (2014) 390. 10.1016/j.matdes.2013.08.055.Search in Google Scholar

[12] F. Chen , G.Feng, Z.Cui: Procedia Eng.81 (2014) 486. 10.1016/j.proeng.2014.10.027.Search in Google Scholar

[13] Y.H. Fan , M.L.Zheng, M.M.Cheng, D.Q.Zhang: Adv. Mater. Res.188 (2011) 325. 10.4028/www.scientific.net/AMR.188.325Search in Google Scholar

[14] Y.Y. Zong , D.B.Shan, M.Xu, Y.Lv: J. Mater. Process. Technol.209 (2009) 1988. 10.1016/j.jmatprotec.2008.04.063.Search in Google Scholar

[15] S. Roy , S.Suwas: J. Alloys Compd.548 (2013) 110. 10.1016/j.jallcom.2012.08.123.Search in Google Scholar

[16] Y. Estrin , H.Mecking: Acta Mater.32 (1984) 57. 10.1016/0001-6160(84)90202-5.Search in Google Scholar

Received: 2014-12-03
Accepted: 2015-03-03
Published Online: 2015-08-07
Published in Print: 2015-08-11

© 2015, Carl Hanser Verlag, München

Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.111241/html
Scroll to top button