Effect of annealing and surfactant on photoluminescence of ZnS:O2− nanoparticles
-
Zhong Chen
Abstract
ZnS:O2− (ZSO) nanoparticles were synthesized using a low temperature solid-state reaction method. The effects of annealing conditions and the content of the surfactant polyethylene glycol (PEG) on photoluminescence (PL) properties of the ZSO nanoparticles were studied. It was found that annealing and adding PEG during the synthesis did not change the crystal structure of ZSO nanoparticles, and their average crystallite size increased with increasing annealing time and temperature, but decreased with increasing PEG content. The emission intensity of ZSO nanoparticles was found to be enhanced after annealing or using PEG during the synthesis. Optimal annealing conditions both in air and vacuum and the optimal content of PEG were obtained for achieving maximum emission intensity from the ZSO nanoparticles.
References
[1] S. Sahare , S.J.Dhoble, P.Singh, M.Ramrakhiani: Adv. Mater. Lett.4 (2012) 169.Suche in Google Scholar
[2] X. Wang , Z.Xie, H.Huang, Z.Liu, D.Chen, G.Shen: J. Mater. Chem.22 (2012) 6845. 10.1039/c1jm14551gSuche in Google Scholar
[3] J. Kim , H.Choi, C.Nahm, C.Kim, J.I.Kim, W.Lee, S.Kang, B.Lee, T.Hwang, H.H.Park, B.Park: Appl. Phys. Lett.102 (2013) 183901. 10.1063/1.4773179Suche in Google Scholar
[4] M.M.H. Farooqi , R.K.Srivastava, S.G.Prakash: AIP Conference Proceedings1536 (2013) 179. 10.1063/1.4810159Suche in Google Scholar
[5] K. Sahu , H.Wu, M.A.Berg: J. Am. Chem. Soc.135 (2013) 1002. 10.1021/ja3112109Suche in Google Scholar PubMed
[6] B. Poornaprakash , D.Amaranatha Reddy, G.Murali, N.Madhusudhana Rao, R.P.Vijayalakshmi, B.K.Reddy: J. Alloys Compd.577 (2013) 79. 10.1016/j.jallcom.2013.04.106Suche in Google Scholar
[7] M.M. Biggs , O.M.Ntwaeaborwa, J.J.Terblans, H.C.Swart: Physica B404 (2009) 4470. 10.1016/j.physb.2009.09.048Suche in Google Scholar
[8] S. Nazerdeylami , E.Saievar-Iranizad, Z.Dehghani, M.Molaei: Physica B406 (2011) 108. 10.1016/j.physb.2010.10.033Suche in Google Scholar
[9] T.-P. Tang , M.-R.Yang, K.-S.Chen: Ceram. Int.26 (2000) 341. 10.1016/S0272-8842(99)00061-9Suche in Google Scholar
[10] X. Wang , D.Li, Y.Guo, X.Wang, Y.Du, R.Sun: Opt. Mater.34 (2012) 646. 10.1016/j.optmat.2011.09.013Suche in Google Scholar
[11] R. Sarkar , C.S.Tiwary, P.Kumbhakar, A.K.Mitra: Physica B404 (2009) 3855. 10.1016/j.physb.2009.07.106Suche in Google Scholar
[12] S. Kim , T.Lim, M.Jung, K.-J.Kong, K.-S.An, S.Ju: J. Lumin.130 (2010) 2153. 10.1016/j.jlumin.2009.07.035Suche in Google Scholar
[13] J. Lu , X.Zeng, H.Liu, W.Zhang, Y.Zhang: J. Phys. Chem. C116 (2012) 23013. 10.1021/jp205841zSuche in Google Scholar
[14] M. Javed Iqbal , S.Iqbal: J. Lumin.134 (2013) 739. 10.1016/j.jlumin.2012.07.001Suche in Google Scholar
[15] S.C. Qu , W.H.Zhou, F.Q.Liu, N.F.Chen, Z.G.Wang, H.Y.Pan, D.P.Yu: Appl. Phys. Lett.80 (2002) 3605. 10.1063/1.1478152Suche in Google Scholar
[16] K. Manzoor , S.R.Vadera, N.Kumar, T.R.N.Kutty: Mater. Chem. Phys.82 (2003) 718. 10.1016/S0254-0584(03)00366-3Suche in Google Scholar
[17] Y. Li , S.Zhou, Z.Chen, Y.Yang, N.Chen, G.Du: Ceram. Int.59 (2013) 5521. 10.1016/j.ceramint.2012.12.064Suche in Google Scholar
[18] X.X. Li , Z.Chen, G.Du, N.Chen, Q.Yu: Mater. Sci. Eng. B178 (2013) 917. 10.1016/j.mseb.2012.10.032Suche in Google Scholar
[19] D. Amaranatha Reddy , G.Murali, B.Poornaprakash, R.P.Vijayalakshmi, B.K.Reddy: Solid State Commu.152 (2012) 596. 10.1016/j.ssc.2012.01.023Suche in Google Scholar
[20] R. Grasser , A.Scharmann, B.Seidel: J. Cryst. Growth101 (1990) 449. 10.1016/0022-0248(90)91012-FSuche in Google Scholar
[21] H. Ehrlich , T.Shcherba, M.Zhilenko, G.Lisichkin: Mater. Lett.65 (2011) 107. 10.1016/j.matlet.2010.09.044Suche in Google Scholar
[22] M. Kuppayee , G.K.V.Nachiyar, V.Ramasamy: Mater. Sci. Semicon. Process.15 (2012) 136. 10.1016/j.mssp.2011.09.006Suche in Google Scholar
[23] R.N. Bhagava , D.Gallagher, X.Hong, A.Nurmikko: Phys. Rev. Lett.72 (1994) 416. 10.1103/PhysRevLett.72.416Suche in Google Scholar PubMed
[24] A.A. Bol , A.Meijerink: J. Phys. Chem. B105 (2001) 10197. 10.1021/jp0107560Suche in Google Scholar
[25] Z. Chen , S.Zhou, Y.Li, X.X.Li, Y.Li, W.Sun, G.Liu, N.Chen, G.Du: Mater. Sci. Semicon. Process.16 (2013) 833. 10.1016/j.mssp.2013.01.007Suche in Google Scholar
[26] S. Shionoya , W.M.Yen (Eds.): Phosphor Handbook, CRC Press, Boca Raton, FL, USA (1998) 763.Suche in Google Scholar
[27] S.B. Qadri , E.F.Skelton, D.Hsu, A.D.Dinsmore, J.Yang, H.F.Gray, B.R.Ratna: Phys. Rev. B60 (1999) 9191. 10.1103/PhysRevB.60.9191Suche in Google Scholar
[28] Y.D. Jiang : PhD Thesis, Georgia Institute of Technology (1999).Suche in Google Scholar
[29] G.H. Bogush , C.F.ZukoskiIV: J. Colloid Interf. Sci.142 (1991) 19. 10.1016/0021-9797(91)90029-8Suche in Google Scholar
[30] J. Goldstein , D.E.Newbury, D.C.Joy, C.E.Lyman, P.Echlin, E.Lifshin, L.Sawyer, J.R.Michael: Scanning Electron Microscopy and X-ray Microanalysis, Springer, Berlin, (2003). 10.1007/978-1-4615-0215-9Suche in Google Scholar
[31] S. Sapra , N.Shanthi, D.D.Sarma: Phys. Rev. B66 (2002) 205202. 10.1103/PhysRevB.66.205202Suche in Google Scholar
[32] J.I. Pankove : Optical Processes in Semiconductors, Prentice-Hall Inc., USA, (1971) 36.Suche in Google Scholar
[33] T. Takagahara , K.Takeda: Phys. Rev. B46 (1992) 15578. 10.1103/PhysRevB.46.15578Suche in Google Scholar
[34] N. Chestnoy , T.D.Harris, R.Hull, L.E.Brus: J. Phys. Chem.90 (1986) 3393. 10.1021/j100406a018Suche in Google Scholar
[35] A. Bera , D.Basak: ACS Appl. Mater. Inter.2 (2010) 408. 10.1021/am1006047Suche in Google Scholar PubMed
[36] Z. Chen , X.X.Li, N.Chen, H.Wang, G.P.Du, A.Y.M.Suen: J. Sol-Gel Sci. Technol.62 (2012) 252. 10.1007/s10971-012-2719-5Suche in Google Scholar
[37] Z. Chen , X.X.Li, G.Du, N.Chen, A.Y.M.Suen: J. Lumin.131 (2011) 2072. 10.1016/j.jlumin.2010.10.024Suche in Google Scholar
[38] M.S. Tokumoto , S.H.Pulcinelli, C.V.Santilli, V.Briois: J. Phys. Chem. B107 (2003) 568. 10.1021/jp0217381Suche in Google Scholar
[39] R. Gärd , Z.X.Sun, W.Forsling: J. Coll. Interf. Sci.169 (1995) 393. 10.1006/jcis.1995.1048Suche in Google Scholar
[40] J. Zhao , L.Zhao, X.Wang: Environ. Sci. Eng. China2 (2008) 415. 10.1007/s11783-008-0056-2Suche in Google Scholar
[41] M. El-Kemary , H.El-Shamy: J. Photoch. Photobio. A205 (2009) 151. 10.1016/j.jphotochem.2009.04.021Suche in Google Scholar
[42] Z.-L. Wang : Characterization of nanosized Materials, Chemical Industry Press, Beijing, (2005).Suche in Google Scholar
[43] B.S. Rema Devi , R.Raveendran, A.V.Vaidyan: Pramana-J. Phys.68 (2007) 679. 10.1007/s12043-007-0068-7Suche in Google Scholar
[44] R.S. Ningthoujam , N.S.Gajbhiye, A.Ahmed, S.S.Umre, S.J.Sharma: J. Nanosci. Nanotechnol.8 (2008) 3059. 10.1166/jnn.2008.152Suche in Google Scholar PubMed
[45] K. Nakamoto : Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, (1986).Suche in Google Scholar
[46] H.S. Chen , S.J.J.Wang, C.J.Lo, J.Y.Chi: Appl. Phys. Lett.86 (2005) 131905. 10.1063/1.1844609Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Effect of carbon on the solubility of nitrogen in slag
- Phase equilibria investigations and thermodynamic modeling of the PbO–Al2O3 system
- Experimental investigation of the phase equilibria in the Co–Fe–Ti ternary system
- Microstructural investigation on marforming and conventional cold deformation in Ni–Ti–Fe-based shape memory alloys
- Modeling of hot deformation behavior with dynamic recrystallization in TC4 titanium alloy
- Powder metallurgy of high speed-steel produced by solid state sintering and heat treatment
- Effect of annealing and surfactant on photoluminescence of ZnS:O2− nanoparticles
- An experimental investigation into the effects of Cr2O3 and ZnO2 nanoparticles on the mechanical properties and durability of self-compacting mortar
- Optical properties and weakening of elastic moduli with increasing glass transition temperature (Tg) in (80–x)TeO2-xBaO-20ZnO glasses
- Simple fabrication of highly ordered anodic aluminum oxide (AAO) films
- Short Communications
- Launching particle to constant reinforcement ratio as a parameter for improving the nanoreinforcement distribution and tensile strength of aluminum nanometal matrix composites
- Manganese ferrite–graphene nanocomposite as a high-performance anode material for lithium-ion batteries
- Facile synthesis of TiO2 nanoplates decorated with Ag nanoparticles for electro-oxidation of hydrazine
- People
- People
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Effect of carbon on the solubility of nitrogen in slag
- Phase equilibria investigations and thermodynamic modeling of the PbO–Al2O3 system
- Experimental investigation of the phase equilibria in the Co–Fe–Ti ternary system
- Microstructural investigation on marforming and conventional cold deformation in Ni–Ti–Fe-based shape memory alloys
- Modeling of hot deformation behavior with dynamic recrystallization in TC4 titanium alloy
- Powder metallurgy of high speed-steel produced by solid state sintering and heat treatment
- Effect of annealing and surfactant on photoluminescence of ZnS:O2− nanoparticles
- An experimental investigation into the effects of Cr2O3 and ZnO2 nanoparticles on the mechanical properties and durability of self-compacting mortar
- Optical properties and weakening of elastic moduli with increasing glass transition temperature (Tg) in (80–x)TeO2-xBaO-20ZnO glasses
- Simple fabrication of highly ordered anodic aluminum oxide (AAO) films
- Short Communications
- Launching particle to constant reinforcement ratio as a parameter for improving the nanoreinforcement distribution and tensile strength of aluminum nanometal matrix composites
- Manganese ferrite–graphene nanocomposite as a high-performance anode material for lithium-ion batteries
- Facile synthesis of TiO2 nanoplates decorated with Ag nanoparticles for electro-oxidation of hydrazine
- People
- People
- DGM News
- DGM News