Evaluation of the corrosion resistance of plasma nitrided austenitic stainless steel
-
Daniel Mareci
Abstract
Plasma nitriding at 500°C for 14 h was applied to austenitic 304 stainless steel for surface hardening. The effect of surface treatment on the corrosion resistance of the material was investigated in naturally-aerated 0.5 M NaCl solution for 30 days using linear potentiodynamic polarization and electrochemical impedance spectroscopy methods. Both as-cast and plasma nitrided stainless steel samples underwent spontaneous passivation, though the nitrided sample exhibited more positive zero current potential, higher breakdown potential, and lower anodic current densities than the as-cast material. Impedance spectra were interpreted in terms of a duplex passive film, corrosion resistance mainly arising from a thin inner compact layer, whereas the outer layer was more porous and less sealing. Capacitive behaviour and high corrosion resistance were observed in the low and medium frequency ranges for the nitrided samples.
References
[1] G.Bregliozzi, S.I.-U.Ahmed, A.Di Schino, J.M.Kenny, H.Haefke: Tribol. Lett.17 (2004) 697. 10.1007/s11249-004-8075-zSuche in Google Scholar
[2] J.K.Hirvonen, C.A.Carosella, R.A.Kant, I.Singer, R.Vardiman, B.B.Rath: Thin Solid Films63 (1979) 5. 10.1016/0040-6090(79)90091-9Suche in Google Scholar
[3] D.-C.Wen: Surf. Coat. Technol.204 (2009) 511. 10.1016/j.surfcoat.2009.08.023Suche in Google Scholar
[4] J.Yang, Y.Liu, Z.Ye, D.Yang, S.He: Tribol. Lett.40 (2010) 139. 10.1007/s11249-010-9649-6Suche in Google Scholar
[5] C.Nouveau, P.Steyer, K.R.M.Rao, D.Lagadrillere: Surf. Coat. Technol.205 (2011) 4514. 10.1016/j.surfcoat.2011.03.087Suche in Google Scholar
[6] L.F.Zagonel, J.Bettini, R.L.O.Basso, P.Paredez, H.Pinto, C.M.Lepienski, F.Alvarez: Surf. Coat. Technol.207 (2012) 72. 10.1016/j.surfcoat.2012.05.081Suche in Google Scholar
[7] J.Flis, J.Mankowski, E.Rolinski: Surf. Eng.5 (1989) 151. 10.1179/sur.1989.5.2.151Suche in Google Scholar
[8] G.K.Wolf: Surf. Coat. Technol.83 (1996) 1. 10.1016/0257-8972(95)02810-2Suche in Google Scholar
[9] R.M.Souto, H.Alanyali: Corros. Sci.42 (2000) 2201. 10.1016/S0010-938X(00)00057-3Suche in Google Scholar
[10] A.Medina-Flores, C.Arganis, P.Santiago, J.Oseguera: Surf. Coat. Technol.188–189 (2004) 140. 10.1016/j.surfcoat.2004.08.015Suche in Google Scholar
[11] N.Yasavol, F.Mahboubi: Mater. Design38 (2012) 59. 10.1016/j.matdes.2012.01.047Suche in Google Scholar
[12] R.M.Souto, H.Alanyali, R.Rodríguez-Raposo, L.Fernández-Mérida, S.González: Int. J. Electrochem. Sci.8 (2013) 8530.Suche in Google Scholar
[13] M.Samandi, B.A.Shedden, D.I.Smith, G.A.Collins, R.Hutchings, J.Tendys: Surf. Coat. Technol.59 (1993) 261. 10.1016/0257-8972(93)90094-5Suche in Google Scholar
[14] K.Bell, T.Akamatsu: Stainless Steel 2000 – Thermochemical Surface Engineering of Stainless Steel, The Institute of Materials, London (2001).Suche in Google Scholar
[15] M.K.Lei, X.M.Zhu: Surf. Coat. Technol.201 (2007) 6865. 10.1016/j.surfcoat.2006.07.013Suche in Google Scholar
[16] L.Nosei, S.Farina, M.Ávalos, L.Náchez, B.J.Gómez, J.Feugeas: Thin Solid Films516 (2008) 1044. 10.1016/j.tsf.2007.08.072Suche in Google Scholar
[17] W.Ensinger, G.K.Wolf: Mater. Sci. Eng. A116 (1989) 1. 10.1016/0921-5093(89)90120-2Suche in Google Scholar
[18] F.Z.Bouanis, F.Bentiss, M.Traisnel, C.Jama: Electrochim. Acta54 (2009) 2371. 10.1016/j.electacta.2008.10.068Suche in Google Scholar
[19] G.S.Chang, J.H.Son, S.H.Kim, K.H.Chae, C.N.Whang, E.Menthe, K.-T.Rie, Y.P.Lee: Surf. Coat. Technol.112 (1999) 291. 10.1016/S0257-8972(98)00795-6Suche in Google Scholar
[20] E.Menthe, K.-T.Rie: Surf. Coat. Technol.116 (1999) 199. 10.1016/S0257-8972(99)00085-7Suche in Google Scholar
[21] S.Parascandola, W.Möller, D.Williamson: Appl. Phys. Lett.76 (2000) 2194. 10.1063/1.126294Suche in Google Scholar
[22] S.Picard, J.B.Memet, R.Sabot, J.L.Grosseau-Poussard, J.-P.Rivière, R.Meilland: Mater. Sci. Eng.303 (2001) 163. 10.1016/S0921-5093(00)01841-4Suche in Google Scholar
[23] L.L.Pranevicius, P.Valatkevicius, V.Valincius, C.Templier, J.-P.Rivière, L.Pranevicius: Surf. Coat. Technol.156 (2002) 219. 10.1016/S0257-8972(02)00091-9Suche in Google Scholar
[24] C.X.Li, T.Bell: Corros. Sci.48 (2006) 2036. 10.1016/j.corsci.2004.11.029Suche in Google Scholar
[25] X.Y.Li, H.Dong: Mater. Sci. Technol.19 (2003) 1427. 10.1179/026708303225002046Suche in Google Scholar
[26] I.E.Castañeda, J.G.Gonzalez-Rodriguez, J.Colin, M.A.Neri-Flores: J. Solid State Electrochem.14 (2010) 1145. 10.1007/s10008-009-0941-zSuche in Google Scholar
[27] S.Nagarajan, V.Raman, N.J.Rajendran: J. Solid State Electrochem.14 (2010) 1197. 10.1007/s10008-009-0948-5Suche in Google Scholar
[28] D.Mareci, I.Rusu, R.Chelariu, G.Bolat, C.Munteanu, D.Sutiman, R.M.Souto: Eur. J. Sci. Theol.9 (2013) 189.Suche in Google Scholar
[29] D.Mareci, G.Ciurescu, R.Chelariu, I.Cretescu, D.Sutiman: Environ. Eng. Manage. J.9 (2010) 81.10.30638/eemj.2010.012Suche in Google Scholar
[30] M.J.Baldwin, S.Kumar, J.M.Priest, M.P.Fewell, K.E.Prince, K.T.Short: Thin Solid Films345 (1999) 108. 10.1016/S0040-6090(99)00066-8Suche in Google Scholar
[31] L.C.Gontijo, R.Machado, S.E.Kuri, L.C.Casteletti, P.A.P.Nascente: Thin Solid Films515 (2006) 1093. 10.1016/j.tsf.2006.07.075Suche in Google Scholar
[32] V.Barranco, S.FeliuJr., S.Feliu: Corros. Sci.46 (2004) 2203. 10.1016/j.corsci.2003.09.032Suche in Google Scholar
[33] B.E.Wilde, E.Williams: Electrochim. Acta16 (1971) 1971. 10.1016/0013-4686(71)85151-4Suche in Google Scholar
[34] J.R.Scully, R.G.Kelly, in: S.D.Cramer, B.S.CovinoJr. (Eds.), Corrosion: Fundamentals, Testing, and Protection, ASM Handbook 13A, ASM International, Materials Park, OH (2003) 68.Suche in Google Scholar
[35] T.M.Muraleedharan, E.I.Meletis: Thin Solid Films221 (1992) 104. 10.1016/0040-6090(92)90802-ISuche in Google Scholar
[36] V.Singh, E.I.Meletis: Surf. Coat. Technol.201 (2006) 1093. 10.1016/j.surfcoat.2005.10.045Suche in Google Scholar
[37] G.Bolat, D.Mareci, S.Iacoban, N.Cimpoesu, C.Munteanu: J. Spectroscopy2013 (2013) Article ID 714920, 7 pages. 10.1155/2013/714920.Suche in Google Scholar
[38] R.Hirayama, S.Haruyama: Corrosion47 (1991) 952. 10.5006/1.3585208Suche in Google Scholar
[39] F.Mansfeld: Electrochim. Acta38 (1993) 1891. 10.1016/0013-4686(93)80311-MSuche in Google Scholar
[40] J.Pan, D.Thierry, C.Leygraf: Electrochim. Acta41 (1996) 1143. 10.1016/0013-4686(95)00465-3Suche in Google Scholar
[41] M.Meticoš-Huković, Z.Pilić, R.Babić, D.Omanović: Acta Biomater.2 (2006) 693. 10.1016/j.actbio.2006.06.002Suche in Google Scholar PubMed
[42] F.Mansfeld: J. Electrochem. Soc.120 (1973) 515. 10.1149/1.2403346Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Phase equilibria studies of the “MnO”–Al2O3–SiO2 system in equilibrium with metallic alloy. Part 2: phase equilibria
- X-ray stress measurement from an imperfect Debye–Scherrer ring
- Effect of heat treatment on the microstructure and tensile properties of Ti-5Al-3Zr-4Mo-3V alloy
- Quantification of roping in aluminium sheet alloys for car body applications by combining 3D surface measurements with Fourier analysis
- Dissimilar friction stir welding between polycarbonate and AA 7075 aluminum alloy
- Evaluation of the corrosion resistance of plasma nitrided austenitic stainless steel
- Corrosion performance and microstructural response of A380 matrix alloy reinforced with sol–gel TiO2-coated SiC particles: a perspective on previous studies
- Role of chloride in the electrochemical behaviour of AZ31B Mg alloy
- Implications of solute super-saturation in growth of vaporisation-induced recrystallised grains during heat treatment in Ni-base superalloys
- Rapid synthesis of Mn3O4 powder from pyro-synthesis of ethylene glycol–metal nitrate precursor assisted by nitric acid
- Production of bioactive glass-derived scaffolds using citric acid porogen
- Short Communications
- Microstructure and mechanical properties of deformed Mg–Mn–Sn alloys
- Fast microwave synthesis and characterization of MgTi2O5
- Time dependent synthesis of crystalline Bi2S3 and its application as a sensitizer in SnO2 based solar cells
- Synthesis of cobalt-doped CdS (CdS:Co) by a simple and rapid microwave activated method and investigating optical properties
- People
- In Memoriam Volker Schumacher
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Phase equilibria studies of the “MnO”–Al2O3–SiO2 system in equilibrium with metallic alloy. Part 2: phase equilibria
- X-ray stress measurement from an imperfect Debye–Scherrer ring
- Effect of heat treatment on the microstructure and tensile properties of Ti-5Al-3Zr-4Mo-3V alloy
- Quantification of roping in aluminium sheet alloys for car body applications by combining 3D surface measurements with Fourier analysis
- Dissimilar friction stir welding between polycarbonate and AA 7075 aluminum alloy
- Evaluation of the corrosion resistance of plasma nitrided austenitic stainless steel
- Corrosion performance and microstructural response of A380 matrix alloy reinforced with sol–gel TiO2-coated SiC particles: a perspective on previous studies
- Role of chloride in the electrochemical behaviour of AZ31B Mg alloy
- Implications of solute super-saturation in growth of vaporisation-induced recrystallised grains during heat treatment in Ni-base superalloys
- Rapid synthesis of Mn3O4 powder from pyro-synthesis of ethylene glycol–metal nitrate precursor assisted by nitric acid
- Production of bioactive glass-derived scaffolds using citric acid porogen
- Short Communications
- Microstructure and mechanical properties of deformed Mg–Mn–Sn alloys
- Fast microwave synthesis and characterization of MgTi2O5
- Time dependent synthesis of crystalline Bi2S3 and its application as a sensitizer in SnO2 based solar cells
- Synthesis of cobalt-doped CdS (CdS:Co) by a simple and rapid microwave activated method and investigating optical properties
- People
- In Memoriam Volker Schumacher
- DGM News
- DGM News