Evaluation of the corrosion resistance of plasma nitrided austenitic stainless steel
-
Daniel Mareci
Abstract
Plasma nitriding at 500°C for 14 h was applied to austenitic 304 stainless steel for surface hardening. The effect of surface treatment on the corrosion resistance of the material was investigated in naturally-aerated 0.5 M NaCl solution for 30 days using linear potentiodynamic polarization and electrochemical impedance spectroscopy methods. Both as-cast and plasma nitrided stainless steel samples underwent spontaneous passivation, though the nitrided sample exhibited more positive zero current potential, higher breakdown potential, and lower anodic current densities than the as-cast material. Impedance spectra were interpreted in terms of a duplex passive film, corrosion resistance mainly arising from a thin inner compact layer, whereas the outer layer was more porous and less sealing. Capacitive behaviour and high corrosion resistance were observed in the low and medium frequency ranges for the nitrided samples.
References
[1] G.Bregliozzi, S.I.-U.Ahmed, A.Di Schino, J.M.Kenny, H.Haefke: Tribol. Lett.17 (2004) 697. 10.1007/s11249-004-8075-zSearch in Google Scholar
[2] J.K.Hirvonen, C.A.Carosella, R.A.Kant, I.Singer, R.Vardiman, B.B.Rath: Thin Solid Films63 (1979) 5. 10.1016/0040-6090(79)90091-9Search in Google Scholar
[3] D.-C.Wen: Surf. Coat. Technol.204 (2009) 511. 10.1016/j.surfcoat.2009.08.023Search in Google Scholar
[4] J.Yang, Y.Liu, Z.Ye, D.Yang, S.He: Tribol. Lett.40 (2010) 139. 10.1007/s11249-010-9649-6Search in Google Scholar
[5] C.Nouveau, P.Steyer, K.R.M.Rao, D.Lagadrillere: Surf. Coat. Technol.205 (2011) 4514. 10.1016/j.surfcoat.2011.03.087Search in Google Scholar
[6] L.F.Zagonel, J.Bettini, R.L.O.Basso, P.Paredez, H.Pinto, C.M.Lepienski, F.Alvarez: Surf. Coat. Technol.207 (2012) 72. 10.1016/j.surfcoat.2012.05.081Search in Google Scholar
[7] J.Flis, J.Mankowski, E.Rolinski: Surf. Eng.5 (1989) 151. 10.1179/sur.1989.5.2.151Search in Google Scholar
[8] G.K.Wolf: Surf. Coat. Technol.83 (1996) 1. 10.1016/0257-8972(95)02810-2Search in Google Scholar
[9] R.M.Souto, H.Alanyali: Corros. Sci.42 (2000) 2201. 10.1016/S0010-938X(00)00057-3Search in Google Scholar
[10] A.Medina-Flores, C.Arganis, P.Santiago, J.Oseguera: Surf. Coat. Technol.188–189 (2004) 140. 10.1016/j.surfcoat.2004.08.015Search in Google Scholar
[11] N.Yasavol, F.Mahboubi: Mater. Design38 (2012) 59. 10.1016/j.matdes.2012.01.047Search in Google Scholar
[12] R.M.Souto, H.Alanyali, R.Rodríguez-Raposo, L.Fernández-Mérida, S.González: Int. J. Electrochem. Sci.8 (2013) 8530.Search in Google Scholar
[13] M.Samandi, B.A.Shedden, D.I.Smith, G.A.Collins, R.Hutchings, J.Tendys: Surf. Coat. Technol.59 (1993) 261. 10.1016/0257-8972(93)90094-5Search in Google Scholar
[14] K.Bell, T.Akamatsu: Stainless Steel 2000 – Thermochemical Surface Engineering of Stainless Steel, The Institute of Materials, London (2001).Search in Google Scholar
[15] M.K.Lei, X.M.Zhu: Surf. Coat. Technol.201 (2007) 6865. 10.1016/j.surfcoat.2006.07.013Search in Google Scholar
[16] L.Nosei, S.Farina, M.Ávalos, L.Náchez, B.J.Gómez, J.Feugeas: Thin Solid Films516 (2008) 1044. 10.1016/j.tsf.2007.08.072Search in Google Scholar
[17] W.Ensinger, G.K.Wolf: Mater. Sci. Eng. A116 (1989) 1. 10.1016/0921-5093(89)90120-2Search in Google Scholar
[18] F.Z.Bouanis, F.Bentiss, M.Traisnel, C.Jama: Electrochim. Acta54 (2009) 2371. 10.1016/j.electacta.2008.10.068Search in Google Scholar
[19] G.S.Chang, J.H.Son, S.H.Kim, K.H.Chae, C.N.Whang, E.Menthe, K.-T.Rie, Y.P.Lee: Surf. Coat. Technol.112 (1999) 291. 10.1016/S0257-8972(98)00795-6Search in Google Scholar
[20] E.Menthe, K.-T.Rie: Surf. Coat. Technol.116 (1999) 199. 10.1016/S0257-8972(99)00085-7Search in Google Scholar
[21] S.Parascandola, W.Möller, D.Williamson: Appl. Phys. Lett.76 (2000) 2194. 10.1063/1.126294Search in Google Scholar
[22] S.Picard, J.B.Memet, R.Sabot, J.L.Grosseau-Poussard, J.-P.Rivière, R.Meilland: Mater. Sci. Eng.303 (2001) 163. 10.1016/S0921-5093(00)01841-4Search in Google Scholar
[23] L.L.Pranevicius, P.Valatkevicius, V.Valincius, C.Templier, J.-P.Rivière, L.Pranevicius: Surf. Coat. Technol.156 (2002) 219. 10.1016/S0257-8972(02)00091-9Search in Google Scholar
[24] C.X.Li, T.Bell: Corros. Sci.48 (2006) 2036. 10.1016/j.corsci.2004.11.029Search in Google Scholar
[25] X.Y.Li, H.Dong: Mater. Sci. Technol.19 (2003) 1427. 10.1179/026708303225002046Search in Google Scholar
[26] I.E.Castañeda, J.G.Gonzalez-Rodriguez, J.Colin, M.A.Neri-Flores: J. Solid State Electrochem.14 (2010) 1145. 10.1007/s10008-009-0941-zSearch in Google Scholar
[27] S.Nagarajan, V.Raman, N.J.Rajendran: J. Solid State Electrochem.14 (2010) 1197. 10.1007/s10008-009-0948-5Search in Google Scholar
[28] D.Mareci, I.Rusu, R.Chelariu, G.Bolat, C.Munteanu, D.Sutiman, R.M.Souto: Eur. J. Sci. Theol.9 (2013) 189.Search in Google Scholar
[29] D.Mareci, G.Ciurescu, R.Chelariu, I.Cretescu, D.Sutiman: Environ. Eng. Manage. J.9 (2010) 81.10.30638/eemj.2010.012Search in Google Scholar
[30] M.J.Baldwin, S.Kumar, J.M.Priest, M.P.Fewell, K.E.Prince, K.T.Short: Thin Solid Films345 (1999) 108. 10.1016/S0040-6090(99)00066-8Search in Google Scholar
[31] L.C.Gontijo, R.Machado, S.E.Kuri, L.C.Casteletti, P.A.P.Nascente: Thin Solid Films515 (2006) 1093. 10.1016/j.tsf.2006.07.075Search in Google Scholar
[32] V.Barranco, S.FeliuJr., S.Feliu: Corros. Sci.46 (2004) 2203. 10.1016/j.corsci.2003.09.032Search in Google Scholar
[33] B.E.Wilde, E.Williams: Electrochim. Acta16 (1971) 1971. 10.1016/0013-4686(71)85151-4Search in Google Scholar
[34] J.R.Scully, R.G.Kelly, in: S.D.Cramer, B.S.CovinoJr. (Eds.), Corrosion: Fundamentals, Testing, and Protection, ASM Handbook 13A, ASM International, Materials Park, OH (2003) 68.Search in Google Scholar
[35] T.M.Muraleedharan, E.I.Meletis: Thin Solid Films221 (1992) 104. 10.1016/0040-6090(92)90802-ISearch in Google Scholar
[36] V.Singh, E.I.Meletis: Surf. Coat. Technol.201 (2006) 1093. 10.1016/j.surfcoat.2005.10.045Search in Google Scholar
[37] G.Bolat, D.Mareci, S.Iacoban, N.Cimpoesu, C.Munteanu: J. Spectroscopy2013 (2013) Article ID 714920, 7 pages. 10.1155/2013/714920.Search in Google Scholar
[38] R.Hirayama, S.Haruyama: Corrosion47 (1991) 952. 10.5006/1.3585208Search in Google Scholar
[39] F.Mansfeld: Electrochim. Acta38 (1993) 1891. 10.1016/0013-4686(93)80311-MSearch in Google Scholar
[40] J.Pan, D.Thierry, C.Leygraf: Electrochim. Acta41 (1996) 1143. 10.1016/0013-4686(95)00465-3Search in Google Scholar
[41] M.Meticoš-Huković, Z.Pilić, R.Babić, D.Omanović: Acta Biomater.2 (2006) 693. 10.1016/j.actbio.2006.06.002Search in Google Scholar PubMed
[42] F.Mansfeld: J. Electrochem. Soc.120 (1973) 515. 10.1149/1.2403346Search in Google Scholar
© 2015, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Phase equilibria studies of the “MnO”–Al2O3–SiO2 system in equilibrium with metallic alloy. Part 2: phase equilibria
- X-ray stress measurement from an imperfect Debye–Scherrer ring
- Effect of heat treatment on the microstructure and tensile properties of Ti-5Al-3Zr-4Mo-3V alloy
- Quantification of roping in aluminium sheet alloys for car body applications by combining 3D surface measurements with Fourier analysis
- Dissimilar friction stir welding between polycarbonate and AA 7075 aluminum alloy
- Evaluation of the corrosion resistance of plasma nitrided austenitic stainless steel
- Corrosion performance and microstructural response of A380 matrix alloy reinforced with sol–gel TiO2-coated SiC particles: a perspective on previous studies
- Role of chloride in the electrochemical behaviour of AZ31B Mg alloy
- Implications of solute super-saturation in growth of vaporisation-induced recrystallised grains during heat treatment in Ni-base superalloys
- Rapid synthesis of Mn3O4 powder from pyro-synthesis of ethylene glycol–metal nitrate precursor assisted by nitric acid
- Production of bioactive glass-derived scaffolds using citric acid porogen
- Short Communications
- Microstructure and mechanical properties of deformed Mg–Mn–Sn alloys
- Fast microwave synthesis and characterization of MgTi2O5
- Time dependent synthesis of crystalline Bi2S3 and its application as a sensitizer in SnO2 based solar cells
- Synthesis of cobalt-doped CdS (CdS:Co) by a simple and rapid microwave activated method and investigating optical properties
- People
- In Memoriam Volker Schumacher
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Phase equilibria studies of the “MnO”–Al2O3–SiO2 system in equilibrium with metallic alloy. Part 2: phase equilibria
- X-ray stress measurement from an imperfect Debye–Scherrer ring
- Effect of heat treatment on the microstructure and tensile properties of Ti-5Al-3Zr-4Mo-3V alloy
- Quantification of roping in aluminium sheet alloys for car body applications by combining 3D surface measurements with Fourier analysis
- Dissimilar friction stir welding between polycarbonate and AA 7075 aluminum alloy
- Evaluation of the corrosion resistance of plasma nitrided austenitic stainless steel
- Corrosion performance and microstructural response of A380 matrix alloy reinforced with sol–gel TiO2-coated SiC particles: a perspective on previous studies
- Role of chloride in the electrochemical behaviour of AZ31B Mg alloy
- Implications of solute super-saturation in growth of vaporisation-induced recrystallised grains during heat treatment in Ni-base superalloys
- Rapid synthesis of Mn3O4 powder from pyro-synthesis of ethylene glycol–metal nitrate precursor assisted by nitric acid
- Production of bioactive glass-derived scaffolds using citric acid porogen
- Short Communications
- Microstructure and mechanical properties of deformed Mg–Mn–Sn alloys
- Fast microwave synthesis and characterization of MgTi2O5
- Time dependent synthesis of crystalline Bi2S3 and its application as a sensitizer in SnO2 based solar cells
- Synthesis of cobalt-doped CdS (CdS:Co) by a simple and rapid microwave activated method and investigating optical properties
- People
- In Memoriam Volker Schumacher
- DGM News
- DGM News