Mechanism of grain refinement and coarsening in undercooled Ni–Fe alloy
-
Tao Liang
, Zheng Chen , Xiaoqin Yang , Ning Liu , Yanan Yang , Chenlong Duan and Yuemin Zhao
Abstract
The microstructural evolution of undercooled Ni-1 at.% Fe alloy was investigated by means of fluxing and cyclic superheating. Within the achieved undercoolings, there were two grain refinement processes and a grain coarsening process. The evolution mechanisms of the microstructure were studied applying the calculation of a stress accumulation model and dimensionless superheating. The first grain refinement can be ascribed to the dendrite break-up or ripening induced by remelting. The second one was caused by recrystallization induced by stress accumulation originating from the rapid solidification.
References
[1] D.M.Herlach: Mater. Sci. Eng. R12 (1994) 177. 10.1016/0927-796X(94)90011-6Search in Google Scholar
[2] M.Schwarz, A.Karma, K.Eckler, D.M.Herlach: Phys. Rev. Lett. 73 (1994) 1380. 10.1103/PhysRevLett.73.1380Search in Google Scholar
[3] F.Liu, G.C.Yang: Int. Mater. Rev. 51 (2006) 145. 10.1179/174328006X102484Search in Google Scholar
[4] S.Y.Lu, J.F.Li, Y.H.Zhou: Mater. Sci. Eng. A460–461 (2007) 63.Search in Google Scholar
[5] F.Liu, G.C.Yang, X.F.Guo: Mater. Sci. Eng. A311 (2001) 54. 10.1016/S0921-5093(01)00929-7Search in Google Scholar
[6] A.Karma: Inter. J. Non-Equilibrium Process. 11 (1998) 201.Search in Google Scholar
[7] W.J.Boettinger, S.R.Coriell, R.Trivedi: Principles and Technologies1 (1988) 13.Search in Google Scholar
[8] T.Z.Kattamis, M.C.Flemings: AFS Trans. 75 (1967) 191.Search in Google Scholar
[9] J.F.Li, W.Q.Jie, G.C.Yang, Y.H.Zhou: Acta Mater. 50 (2002) 1797. 10.1016/S1359-6454(01)00360-3Search in Google Scholar
[10] J.F.Li, Y.C.Liu, G.C.Yang, Y.H.Zhou: J. Crystal Growth192 (1998) 462. 10.1016/S0022-0248(98)00399-6Search in Google Scholar
[11] G.L.F.Powell: J. Mater. Sci. Lett. 10 (1991) 745. 10.1007/BF00723265Search in Google Scholar
[12] T.Wang, L.Zhao, S.H.Fu, Y.Zhang, Y.X.Zhao, L.Guo: Adv. Mater. Res. 709 (2013) 143. 10.4028/www.scientific.net/AMR.651.143Search in Google Scholar
[13] A.Zambon, B.Badan, K.Eckler, F.Gärtner, A.F.Norman, A.L.Greer, D.M.Herlach, E.Ramous: Acta Mater. 46 (1998) 4657. 10.1016/S1359-6454(98)00141-4Search in Google Scholar
[14] N.Liu, G.C.Yang, Y.Z.Chen: Prog. Nat. Sci. 16 (1) (2006) 120.10.1080/10020070612331343202Search in Google Scholar
[15] Y.Z.Chen, G.C.Yang, F.Liu, N.Liu, H.Xie, Y.H.Zhou: J. Cryst. Growth282 (2005) 490. 10.1016/j.jcrysgro.2005.04.087Search in Google Scholar
[16] H.F.Wang, F.Liu, Z.Chen, G.C.Yang, Y.H.Zhou: Acta Mater. 55 (2007) 497. 10.1016/j.actamat.2006.07.031Search in Google Scholar
[17] W.J.Boettinger, S.R.Coriell, R.Trivedi: in: R.Mehrabian, P.A.Parrish, (eds), Rapid Solidification Processing: Principles and Technologies IV, Claitor's, Baton Rouge, LA, 13 (1988).Search in Google Scholar
[18] P.K.Galenko, D.A.Danilov: Phys. Lett. A235 (1997) 271. 10.1016/S0375-9601(97)00562-8Search in Google Scholar
[19] M.J.Aziz: J. Applied Physics53 (2) (1982) 1158. 10.1063/1.329867Search in Google Scholar
[20] J.L.Walker: The Physical Chemistry of Process Metallurgy2 (1959) 485.Search in Google Scholar
[21] F.Liu, X.Guo, G.C.Yang: J. Crystal Growth219 (4) (2000) 489. 10.1016/S0022-0248(00)00759-4Search in Google Scholar
[22] A.K.Dahle, H.J.Thevik, L.Arnberg: Metall. Mater. Trans. B30 (1999) 287. 10.1007/s11661-999-0317-0Search in Google Scholar
[23] F.Liu, G.C.Yang: J. Crystal Growth231 (2001) 295. 10.1016/S0022-0248(01)01438-5Search in Google Scholar
[24] M.Schwarz, A.Karma, K.Eckler, D.M.Herlach: Phys. Rev. Lett. 73 (1994) 1380. 10.1103/PhysRevLett.73.1380Search in Google Scholar PubMed
[25] A.Karma: Int. J. Non-Equilib. Process. 11 (1998) 201.Search in Google Scholar
[26] H.F.Wang, F.Liu, Y.M.Tan: Acta Mater. 59 (2011) 4787. 10.1016/j.actamat.2010.07.044Search in Google Scholar
[27] N.Liu, G.C.Yang, F.Liu, Y.Z.Chen, C.L.Yang, Y.P.Lu, D.Chen, Y.H.Zhou: Mater. Character. 57 (2006) 115. 10.1016/j.matchar.2005.12.008Search in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Diffusivities and atomic mobilities of an Sn–Ag–Bi–Cu–Pb melt
- Experimental study of the phase relations in the Fe–Cr–Si ternary system at 700°C
- Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys
- Mechanism of grain refinement and coarsening in undercooled Ni–Fe alloy
- Effects of copper content and liquid separation on the microstructure formation of Co–Cu immiscible alloys
- Influence of the solidification temperature range on Gasar structures made from Cu–Mn alloys
- Effect of ageing time on mechanical properties and tribological behaviour of aluminium hybrid composite
- Microstructure and tensile properties of a friction stir welded Al–Mg–Si alloy
- Lüders effect in Al 99.7% extruded via the KoBo method
- Reduced graphene oxide nanocomposites with different diameters and crystallinity of TiO2 nanoparticles – synthesis, characterization and photocatalytic activity
- Constitutive modelling of mill loads during hot rolling of AISI 321 austenitic stainless steel
- X-ray stress measurement with two-dimensional detector based on Fourier analysis
- People
- People
- People
- DGM News
- Personal
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Diffusivities and atomic mobilities of an Sn–Ag–Bi–Cu–Pb melt
- Experimental study of the phase relations in the Fe–Cr–Si ternary system at 700°C
- Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys
- Mechanism of grain refinement and coarsening in undercooled Ni–Fe alloy
- Effects of copper content and liquid separation on the microstructure formation of Co–Cu immiscible alloys
- Influence of the solidification temperature range on Gasar structures made from Cu–Mn alloys
- Effect of ageing time on mechanical properties and tribological behaviour of aluminium hybrid composite
- Microstructure and tensile properties of a friction stir welded Al–Mg–Si alloy
- Lüders effect in Al 99.7% extruded via the KoBo method
- Reduced graphene oxide nanocomposites with different diameters and crystallinity of TiO2 nanoparticles – synthesis, characterization and photocatalytic activity
- Constitutive modelling of mill loads during hot rolling of AISI 321 austenitic stainless steel
- X-ray stress measurement with two-dimensional detector based on Fourier analysis
- People
- People
- People
- DGM News
- Personal