Startseite Microstructure and residual stresses of laser remelted surfaces of a hot work tool steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microstructure and residual stresses of laser remelted surfaces of a hot work tool steel

  • Johannes Preußner , Sabine Oeser , Wulf Pfeiffer , André Temmler und Edgar Willenborg
Veröffentlicht/Copyright: 12. April 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper deals with a systematic metallurgical analysis of laser remelted surfaces on the hot work tool steel 1.2343 (AISI: H11). There are novel techniques using laser remelting for polishing surfaces using a constant laser beam power or for structuring surfaces using a modulated laser power. Basic properties, e. g. residual stresses, retained austenite, micro-stresses, microstructure, chemical composition and micro-hardness of the remelted near-surface layers are analyzed for different sets of procedural parameters such as laser power, laser beam diameter and number of repetitions. A carbon depleted area was found close to the remelted zone. The surface residual stresses tend from tensile to compressive and the content of retained austenite is lower when increasing both laser beam diameter and laser power. The formation of surface residual stresses is explained by a combination of shrinkage stresses and transformation stresses. The residual stresses tend from tensile to compressive with increasing number of repetitions, which can be explained by a preheating effect. A linear correlation between the measured surface hardness and the peak half width acquired by X-ray diffraction was found.


* Correspondence address, Dr.-Ing. Johannes Preußner, Fraunhofer IWM, Wöhlerstraße 11, 79108 Freiburg, Germany, Tel.: +49 761 5142-101, Fax: +49 761 5142-510, E-mail:

References

[1] T.Shao, M.Hua, H.Tam, E.H.Cheung: Surf. Coat. Technol.197 (2005) 7784. 10.1016/j.surfcoat.2005.01.010Suche in Google Scholar

[2] A.Gasser, W.Meiners, A.Weisheit, E.Willenborg, J.Stollenwerk, K.Wissenbach: Laser Technik Journal7 (2010) 4753. 10.1002/latj.201090061)Suche in Google Scholar

[3] M.Bereznai, I.Pelsöczi, Z.Tóth, K.Turzó, M.Radnai, Z.Bor, A.Fazekas: Biomaterials24 (2003) 41974203. 10.1016/S0142-9612(03)00318-1Suche in Google Scholar

[4] A.Temmler, E.Willenborg, K.Wissenbach: Physics Procedia12 (2011) 419430. 10.1016/j.phpro.2011.03.053Suche in Google Scholar

[5] A.Temmler, E.Willenborg, K.Wissenbach: Designing Surfaces by Laser Remelting, in: Proc 7th Int. Conf. on Micromanufacturing, Evanston, IL, (2012) 298305.Suche in Google Scholar

[6] N.Pirch, S.Höges, KWissenbach: Mechanisms of surface rippling during laser polishing, in: Proc. 8th Int. Seminar on Numerical Analysis of Weldability, Graz-Seggau (2006) 2527.Suche in Google Scholar

[7] R.Ostholt, E.Willenborg, K.Wissenbach: Laser polishing of metallic freeform surfaces, in: Proc. 5th Int. WLT-Conference on Lasers in Manufacturing, Munich (2009) 397401.Suche in Google Scholar

[8] E.Willenborg: Polieren von Werkzeugstählen mit Laserstrahlung, Shaker Verlag, Aachen (2006).Suche in Google Scholar

[9] E.Willenborg, K.Wissenbach, R.Poprawe: Polishing by laser radiation, in: Proc. 2nd Int. WLT-Conference on Lasers in Manufacturing, Munich (2003) 297300.Suche in Google Scholar

[10] European Standard DIN EN ISO 4957:2001–02.Suche in Google Scholar

[11] European Standard EN 15305,:2008, Non-destructive testing – Test method for residual stress analysis by X-ray diffraction.Suche in Google Scholar

[12] E.Macherauch, P.Müller: Z. Angew. Phys.XIII (1961) 305312.Suche in Google Scholar

[13] D.Klobčar, M.Muhič, M.Pleterski, J.Tušek: Metalurgija51 (2012) 305308.Suche in Google Scholar

[14] S.-H.Cho, J.-W.Kim: Sci. Technol. Weld. Joi.7 (2002) 212. 10.1179/136217102225004257Suche in Google Scholar

[15] D.Deng: Mater. Des.30 (2009) 359366. 10.1016/j.matdes.2008.04.052Suche in Google Scholar

[16] P.Ferro, H.Porzner, A.Tiziani, F.Bonollo: Modell. Simul. Mater. Sci. Eng.14 (2006) 117136. 10.1088/0965-0393/14/2/001Suche in Google Scholar

[17] M.C.Payares-Asprino, H.Katsumoto, S.Liu: Welding Journal, Research Supplement87 (2008) 279289.Suche in Google Scholar

[18] H.K.D.H.Bhadeshia: Solid State Phenomena172–174 (2011) 1324.10.4028/www.scientific.net/SSP.172-174.13Suche in Google Scholar

[19] H.Wohlfahrt: HTM Härterei-Tech. Mitt.41 (1986) 248257.Suche in Google Scholar

[20] J.A.Francis, H.J.Stone, S.Kundu, R.B.Rogge, H.K.D.H.Bhadeshia, P.J.Withers, L.Karlsson, in: ASME, Proc. PVP San Antonio, TX, (2007), 18. PMid:17093973;Suche in Google Scholar

[21] P.J.Alberry, W.K.C.Jones: Met. Technol.11 (1977) 557. 10.1179/030716977803292826Suche in Google Scholar

[22] B.A.Van Brussel, H.J.Hegge, J.Th.M.De Hosson, R.Delhez, Th.H.de Keijser, N.M.Van der Pers: Scripta Metall. Mater.22 (1991) 779784. 10.1016/0956-716X(91)90224-OSuche in Google Scholar

[23] B.A.Van Brussel, J.Th.M.De Hosson: Mater. Sci. Eng.A161 (1993) 8389. 10.1016/0921-5093(93)90478-WSuche in Google Scholar

[24] J.Johansson, M.Odén: Metall. Mater. Trans.A31 (2000) 15571570. 10.1007/s11661-000-0166-3Suche in Google Scholar

[25] Datasheet Vidar Superior, Edition 4, Revised 09.2013, Uddeholms AB, http://www.uddeholm.de/german/files/downloads/vidarsuperior-eng__R1006_e3.pdf.Suche in Google Scholar

[26] Datasheet Böhler W300, DE – 04.05– 1000 SPS, Böhhler Edelstahl GmbH, http://www.bohler-edelstahl.com/files/W300DE.pdf.Suche in Google Scholar

[27] M.Vedani: J. Mater. Sci.39 (2004) 241249. 10.1023/B:JMSC.0000007750.16970.4eSuche in Google Scholar

[28] H.Berns, W.Theisen: Ferrous Materials, Springer-Verlag, Berlin (2008).Suche in Google Scholar

[29] L.Xiao, Z.Fan, Z.Jinxiu, Z.Mingxing, K.Mokuang, G.Zhenqi: Phys. Rev. B52 (1995) 99709978. 10.1103/PhysRevB.52.9970Suche in Google Scholar

Received: 2013-08-15
Accepted: 2013-10-26
Published Online: 2014-04-12
Published in Print: 2014-04-14

© 2014, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Original Contributions
  4. Microstructure and residual stresses of laser remelted surfaces of a hot work tool steel
  5. Dynamic observation of twin evolution during austenite grain growth in an Fe–C–Mn–Si alloy
  6. Hot ductility behavior of Incoloy901 superalloy in the cast and wrought conditions
  7. The influence of aluminium intermediate layer in dissimilar friction welds
  8. Effect of TiO2 in aluminum matrix on workability behavior of powder metallurgy composites during cold upsetting
  9. Approach to evaluation of the overall strengthening and toughening effect of continuous fiber-reinforced ceramic matrix composites
  10. The effect of SiC/Al2O3 particles used during FSP on mechanical properties of AZ91 magnesium alloy
  11. Studies on salt fog corrosion behavior of friction stir welded AA7075–T651 aluminum alloy
  12. Evaluation of corrosion performance of two Mn-containing stainless steel alloys
  13. Carbothermal synthesis of β-SiC powders from silicon and SiO2-coated carbon powders
  14. Synthesis and application of TiO2 nanotubes in environmental pollutant removal
  15. Mechanical properties of polyvinyl alcohol sponge under different strain rates
  16. Short Communications
  17. Effects of Al2O3 phase composition on AlON powder synthesis via aluminothermic reduction and nitridation
  18. Atomic group rotation mechanism of {1013} twinning in HCP materials
  19. Self-propagation high-temperature sintering of the Ti–Al–C-diamond/BN system
  20. People
  21. The German Materials Society congratulates its long-time Managing Director Dr. Peter Paul Schepp on the occasion of his 65th birthday
  22. Dr. Margarethe Hofmann-Amtenbrink on her 65th birthday
  23. DGM News
  24. DGM News
Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111027/html?lang=de
Button zum nach oben scrollen