Home Mechanical properties of polyvinyl alcohol sponge under different strain rates
Article
Licensed
Unlicensed Requires Authentication

Mechanical properties of polyvinyl alcohol sponge under different strain rates

  • Alireza Karimi , Mahdi Navidbakhsh and Hossein Yousefi
Published/Copyright: April 12, 2014
Become an author with De Gruyter Brill

Abstract

Polyvinyl alcohol (PVA) is a suitable material for biomedical and pharmaceutical applications. This paper presents a scientific study on the stiffness, strength, and energy absorption characteristics of a fabricated PVA sponge under different strain rates with a view to using it as an alternative biodegradable and biocompatible material. A range of tensile tests, such as stress failure and cyclic, on PVA sponge have been carried out. The stress–strain curves in all strain rates (1, 20, 100 mm min−1) indicated a near constant plateau stress over a long strain range, which is ideal for energy absorption applications. It was found that the PVA sponge biomaterial exhibited remarkable stiffness, strength, and energy absorption capacities that are comparable to those of some biomaterials with the same density range. PVA sponge can also bear suitable stress both at low and high strain rates which enables it to be implemented in most tissue engineering scaffolds.


* Correspondence address, Mahdi Navidbakhsh, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16844, Iran, Tel: +98 21 77240540, Fax: +98 21 77240541, E-mail:

References

[1] Y.Liu, L.M.Geever, J.E.Kennedy, C.L.Higginbotham, P.A.Cahill, G.B.McGuinness: J. Mech. Behav. Biomed. Mater.3 (2010) 203. 10.1016/j.jmbbm.2009.07.001Search in Google Scholar

[2] S.Jiang, S.Liu, W.Feng: J. Mech. Behav. Biomed. Mater.4 (2011) 1228. 10.1016/j.jmbbm.2011.04.005Search in Google Scholar

[3] H.Jiang, G.Campbell, D.Boughner, W.-K.Wan, M.Quantz: Med. Eng. Phys.26 (2004) 269. 10.1016/j.medengphy.2003.10.007Search in Google Scholar

[4] J.A.Stammen, S.Williams, D.N.Ku, R.E.Guldberg: Biomaterials22 (2001) 799. 10.1016/S0142-9612(00)00242-8Search in Google Scholar

[5] D.Zhang, K.Chen, L.Wu, D.Wang, S.Ge: J. Bionic. Eng.9 (2012) 234. 10.1016/S1672-6529(11)60100-5Search in Google Scholar

[6] C.-T.Lee, P.-H.Kung, Y.-D.Lee: Carbohyd. Polym.61 (2005) 348. 10.1016/j.carbpol.2005.06.018Search in Google Scholar

[7] L.Setiawan, R.Wang, K.Li, A.G.Fane: J. Membr. Sci.394–395 (2012) 80.Search in Google Scholar

[8] S.-Y.Lee, B.P.Pereira, N.Yusof, L.Selvaratnam, Z.Yu, A.A.Abbas, T.Kamarul: Acta. Biomater.5 (2009) 1919. 10.1016/j.actbio.2009.02.014Search in Google Scholar PubMed

[9] L.Liu, C.Zhao, F.Yang: Water. Res.46 (2012) 1969. 10.1016/j.watres.2011.11.047Search in Google Scholar PubMed

[10] S.Moscato, L.Mattii, D.D’Alessandro, M.G.Cascone, L.Lazzeri, L.P.Serino, A.Dolfi, N.Bernardini: Micron39 (2008) 569. 10.1016/j.micron.2007.06.016Search in Google Scholar PubMed

[11] J.M.Davidson: Arch. Dermatol. Res.290 (1998) 1. 10.1007/PL00007448Search in Google Scholar PubMed

[12] D.T.Efron, A.Barbul: Methods Mol. Med.78 (2003) 83.Search in Google Scholar

[13] W.Korteweg, G.P.Korteweg, in: Patent No.: US 6711879B2, Ultracell Medical Technologies of Connecticut, Inc., North Stonington, CT, U.S.A. (2004).Search in Google Scholar

[14] A.Karimi, M.Navidbakhsh: Materials Technology: Advanced Performance Materials, In press (2013). 10.1179/1753555713Y.0000000115Search in Google Scholar

[15] A.Karimi, M.Navidbakhsh, S.Faghihi: Perfusion, In press (2013). 10.1177/0267659113513823.Search in Google Scholar

[16] A.Karimi, M.Navidbakhsh, S.Faghihi: J. Biomater. Tissue. Eng.4 (2014) 1. 10.1166/jbt.2014.1134Search in Google Scholar

[17] A.Karimi, M.Navidbakhsh, S.Faghihi, A.Shojaei, K.Hassani: Proc. IMechE Part H: J. Engineering in Medicine227 (2013) 148. 10.1177/0954409712465709Search in Google Scholar

[18] A.Karimi, M.Navidbakhsh, A.M.Haghi, S.Faghihi: Proc. IMechE Part H: J. Engineering in Medicine. 227 (2013) 609. 10.1177/0954406212463501Search in Google Scholar

[19] A.Karimi, M.Navidbakhsh, A.Shojaei, S.Faghihi: Mater. Sci. Eng. C33 (2013) 2550. 10.1016/j.msec.2013.01.045Search in Google Scholar PubMed

[20] A.Karimi, M.Navidbakhsh, S.Faghihi: Perfusion, In press (2013). 10.1177/0267659113502835.Search in Google Scholar

[21] A.Karimi, M.Navidbakhsh, B.Beigzadeh, S.Faghihi: Int. J. Damage. Mech., In press (2013). 10.1177/1056789513514072.Search in Google Scholar

[22] A.Karimi, M.Navidbakhsh, A.Shojaei, K.Hassani, S.Faghihi: Biomed. Eng: App. Basis. Comm.26 (2013) 145.Search in Google Scholar

[23] A.Karimi, M.Navidbakhsh, B.Beigzadeh: Tissue Cell, In press (2014). 10.1016/j.tice.2013.12.004.Search in Google Scholar

[24] A.Karimi, M.Navidbakhsh: J. Appl. Polym. Sci., In press (2014). 10.1002/APP.40257.Search in Google Scholar

[25] K.Miller, K.Chinzei: J. Biomech.35 (2002) 483. 10.1016/S0021-9290(01)00234-2Search in Google Scholar

[26] A.Karimi, M.Navidbakhsh: J. Thermoplast. Compos. Mater.: In press (2014). 10.1177/0892705713520176.Search in Google Scholar

[27] R.Faturechi, A.Karimi, A.Hashemi, M.Navidbakhsh: J. Biomater. Tissue Eng.4 (2014) 25. 10.1166/jbt.2014.1156.Search in Google Scholar

[28] M.Johnson, S.L.Walter, B.D.Flinn, G.Mayer: Acta Biomater.6 (2010) 2181. 10.1016/j.actbio.2009.12.006Search in Google Scholar PubMed

[29] A.Sionkowska, A.Płanecka: J. Mol. Liq.178 (2013) 5. 10.1016/j.molliq.2012.10.042Search in Google Scholar

[30] P.H.Corkhill, A.S.Trevett, B.J.Tighe: Proc. IMechE Part H: J. Engineering in Medicine204 (1990) 147. 10.1243/PIME_PROC_1990_204_149_02Search in Google Scholar

[31] S.J.Chang, Y.-T.Huang, S.-C.Yang, S.-M.Kuo, M.-W.Lee: Carbohyd. Polym.88 (2012) 684. 10.1016/j.carbpol.2012.01.001Search in Google Scholar

[32] M.F.Ashby, A.G.Evans, N.A.Fleck, L.J.Gibson, J.W.Hutchinson, H.N.G.Wadley, in: Metal Foams: A Design Guide, Butterworth-Heinemann, Warrendale (2000).Search in Google Scholar

[33] J.Shen, Y.Min Xie, X.Huang, S.Zhou, D.Ruan: J. Mech. Behav. Biomed. Mater.15 (2012) 141. 10.1016/j.jmbbm.2012.07.004Search in Google Scholar PubMed

[34] L.J.Gibson, M.F.Ashby, B.A.Harley: Cellular Materials in Nature and Medicine, Cambridge University Press, Cambridge (2010). 10.1038/nature09587Search in Google Scholar PubMed PubMed Central

[35] G.Lu, T.X.Yu: Energy Absorption of Structures and Materials, Woodhead Publishing Ltd, Cambridge (2003). 10.1201/9780203484128Search in Google Scholar

[36] L.J.Bonderer, A.R.Studart, L.J.Gauckler: Science319 (2008) 1069. 10.1126/science.1148726Search in Google Scholar PubMed

[37] Z.Zhang, Y.W.Zhang, H.Gao: Proc. R. Soc. B278 (2011) 519. 10.1098/rspb.2010.1093Search in Google Scholar PubMed PubMed Central

[38] J.Cadman, C.-C.Chang, J.Chen, Y.Chen, S.Zhou, W.Li, Q.Li: Mater. Sci. Eng. C33 (2013) 3146. 10.1016/j.msec.2013.03.031Search in Google Scholar PubMed

[39] S.Arabnejad, D.Pasini: Int. J. Mech. Sci.77 (2013) 249. 10.1016/j.ijmecsci.2013.10.003Search in Google Scholar

Received: 2013-10-10
Accepted: 2013-11-20
Published Online: 2014-04-12
Published in Print: 2014-04-14

© 2014, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Microstructure and residual stresses of laser remelted surfaces of a hot work tool steel
  5. Dynamic observation of twin evolution during austenite grain growth in an Fe–C–Mn–Si alloy
  6. Hot ductility behavior of Incoloy901 superalloy in the cast and wrought conditions
  7. The influence of aluminium intermediate layer in dissimilar friction welds
  8. Effect of TiO2 in aluminum matrix on workability behavior of powder metallurgy composites during cold upsetting
  9. Approach to evaluation of the overall strengthening and toughening effect of continuous fiber-reinforced ceramic matrix composites
  10. The effect of SiC/Al2O3 particles used during FSP on mechanical properties of AZ91 magnesium alloy
  11. Studies on salt fog corrosion behavior of friction stir welded AA7075–T651 aluminum alloy
  12. Evaluation of corrosion performance of two Mn-containing stainless steel alloys
  13. Carbothermal synthesis of β-SiC powders from silicon and SiO2-coated carbon powders
  14. Synthesis and application of TiO2 nanotubes in environmental pollutant removal
  15. Mechanical properties of polyvinyl alcohol sponge under different strain rates
  16. Short Communications
  17. Effects of Al2O3 phase composition on AlON powder synthesis via aluminothermic reduction and nitridation
  18. Atomic group rotation mechanism of {1013} twinning in HCP materials
  19. Self-propagation high-temperature sintering of the Ti–Al–C-diamond/BN system
  20. People
  21. The German Materials Society congratulates its long-time Managing Director Dr. Peter Paul Schepp on the occasion of his 65th birthday
  22. Dr. Margarethe Hofmann-Amtenbrink on her 65th birthday
  23. DGM News
  24. DGM News
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111036/html
Scroll to top button