Startseite Thermodynamics of dilute binary solid solutions using the cluster variation method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermodynamics of dilute binary solid solutions using the cluster variation method

  • Bandikatla N. Sarma , Shreyansh N. Shah , Manoj Kumar und Shrikant Lele
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A transformation of correlation functions used in the cluster variation method is introduced, such that the transformed correlation functions represent departures of the untransformed correlation functions from their values corresponding to ideal solutions. Analytical solutions for the transformed correlation functions and their derivatives with respect to composition in the infinite dilution limit are obtained for the first time for disordered binary bcc (under irregular tetrahedron approximation), fcc, and cph (both under tetrahedron-octahedron approximation) phases using the framework of the cluster variation method. These results are utilized to obtain the configurational contribution to self-interaction coefficients which occur in the expansion of the logarithm of the activity coefficient.


2 Correspondence address: Professor B. Nageswara Sarma, Department of Metallurgical Engineering, Institute of Technology, Banaras Hindu University, Varanasi, 221005, India, Mobile: +919454784898, Fax: +915422369478, E-Mail: ,

Refrences

[1]R.Kikuchi: Phys. Rev.81 (1951) 988. 10.1103/PhysRev.81.988Suche in Google Scholar

[2]J.A.Barker: Proc. Roy. Soc. London A216 (1953) 45. 10.1098/rspa.1953.0005Suche in Google Scholar

[3]C.M.van Baal: Physica64 (1973) 571. 10.1016/0031-8914(73)90010-4Suche in Google Scholar

[4]J.M.Sanchez, D.de Fontaine: Phys. Rev. B17 (1978) 2926. 10.1103/PhysRevB.17.2926Suche in Google Scholar

[5]J.M.Sanchez, F.Ducastelle, D.Gratias: Physica A128 (1984) 334. 10.1016/0378-4371(84)90096-7Suche in Google Scholar

[6]S.Lele, B.N.Sarma: J. Mater. Sc.44 (2009) 2334. 10.1007/s10853-008-3197-6Suche in Google Scholar

[7]T.Mohri, in: W.Pfeiler (Ed.), Alloy Physics, Wiley-VCH, Weinheim (2007) 525. 10.1002/9783527614196.ch10Suche in Google Scholar

[8]D.de Fontaine: Solid State Phys.34 (1979) 73. 10.1016/S0081-1947(08)60360-4Suche in Google Scholar

[9]D.de Fontaine: Solid State Phys.47 (1994) 33. 10.1016/S0081-1947(08)60639-6Suche in Google Scholar

[10]G.Inden, in: G.Kostorz (Ed.), Phase Transformations in Materials, Wiley-VCH, Weinheim (2001) 519.10.1002/352760264XSuche in Google Scholar

[11]C.Colinet: Calphad25 (2001) 607. 10.1016/S0364-5916(02)00011-1Suche in Google Scholar

[12]T.Tanaka: Methods of Statistical Physics, Cambridge University Press, Cambridge (2002). 10.1017/CBO9780511755675Suche in Google Scholar

[13]R.Kikuchi, C.M.van Baal: Scripta Metall.8 (1974) 425. 10.1016/0036-9748(74)90148-3Suche in Google Scholar

[14]R.Kikuchi, H.Sato: Acta Metall.22 (1974) 1099. 10.1016/0001-6160(74)90065-0Suche in Google Scholar

[15]N.S.Golosov, A.M.Tolstik: J. Phys. Chem. Solids36 (1975) 899. 10.1016/0022-3697(75)90165-1Suche in Google Scholar

[16]N.S.Golosov, A.M.Tolstik: J. Phys. Chem. Solids36 (1975) 903. 10.1016/0022-3697(75)90166-3Suche in Google Scholar

[17]N.S.Golosov, A.M.Tolstik: J. Phys. Chem. Solids37 (1976) 273. 10.1016/0022-3697(76)90087-1Suche in Google Scholar

[18]H.Ackerman, G.Inden, R.Kikuchi: Acta Metall.37 (1989) 1. 10.1016/0001-6160(89)90259-9Suche in Google Scholar

[19]B.N.Sarma, S.Lele: Bull. Mater. Sci.28 (2005) 293. 10.1007/BF02711263Suche in Google Scholar

[20]C.H.P.Lupis: Chemical Thermodynamics of Materials, North Holland, Amsterdam (1983).Suche in Google Scholar

[21]C.Wagner: Thermodynamics of Alloys, Addison-Wesley, Reading (1962).Suche in Google Scholar

[22]J.Chipman, in: J.F. Elliott, T.R. Meadowcroft (Eds.), The Chipman Conference, MIT Press, Cambridge (1965) xvii.Suche in Google Scholar

[23]C.H.P.Lupis, J.F.Elliott: Acta Metall.14 (1966) 529. 10.1016/0001-6160(66)90320-8Suche in Google Scholar

[24]S.K.Aggarwal, T.Tanaka: Phys. Rev. B16 (1977) 3963. 10.1103/PhysRevB.16.3963Suche in Google Scholar

[25]D.Gratias, J.M.Sanchez, D.de Fontaine: Physica A113 (1982) 315. 10.1016/0378-4371(82)90023-1Suche in Google Scholar

[26]M.Asta, R.McCormack, D.de Fontaine: Phys. Rev. B48 (1993) 748. 10.1103/PhysRevB.48.748Suche in Google Scholar

[27]R.McCormack, M.Asta, D.de Fontaine, G.Garbulsky, G.Ceder: Phys. Rev. B48 (1993) 6767. 10.1103/PhysRevB.48.6767Suche in Google Scholar

[28]A.F.Kohan, P.D.Tepesch, G.Ceder, C.Wolverton: Comp. Mater. Sci.9 (1998) 389. 10.1016/S0927-0256(97)00168-7Suche in Google Scholar

[29]G.S.Gupta, G.Vamsi Madhav, A.Pandey, B.N.Sarma, S.Lele: Bull. Mater. Sci.28 (2005) 173. 10.1007/BF02704237Suche in Google Scholar

[30]H.Lukas, S.G.Fries, B.Sundman: Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, Cambridge (2007). 10.1017/CBO9780511804137Suche in Google Scholar

[31]G.S.Gupta: Estimation of Energy Parameters for Optimization using Cluster Variation Method, Ph. D. Thesis, Banaras Hindu University, Varanasi, India (2008).Suche in Google Scholar

[32]B.Fultz: Prog. Mater. Sci.55 (2010) 247. 10.1016/j.pmatsci.2009.05.002Suche in Google Scholar

[33]P.Cenedese, J.W.Cahn: Prog. Theor. Phys. Suppl.115 (1994) 95.Suche in Google Scholar

Received: 2010-10-13
Accepted: 2012-2-6
Published Online: 2013-06-11
Published in Print: 2012-10-01

© 2012, Carl Hanser Verlag, Munich

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Original Contributions
  4. Phase equilibria in the Gd–Ni binary and Mg–Ni–Gd ternary systems
  5. Thermodynamics of dilute binary solid solutions using the cluster variation method
  6. Thermal stability of coherent Pd/TiAl interfaces studied from first-principles calculations and experiments
  7. Electropulsing-induced phase transformations and their effects on the single point diamond turning of a tempered alloy AZ91
  8. Study of the mechanism of ductile-regime grinding of SiCp/Al composites using finite element simulation
  9. Investigations on laser welding of magnesium alloys
  10. Investigation of the surface of a laser-treated cast iron cylinder bore
  11. Solidification behaviour of an AA5754 Al alloy ingot cast with high impurity content
  12. Study of the structural evolution of crystalline zinc oxide films prepared by PLD
  13. Effects of sintering temperature on pore characterization and strength of porous cordierite–mullite ceramics by a pore-forming in-situ technique
  14. Sol–gel synthesis of Eu3+, Tb3+ co-doped Y2O3 scintillating nanopowders
  15. Morphological study of SiC coating developed on 2D carbon composites using MTS precursor in a hot-wall vertical reactor
  16. Self-assembling behavior and corrosion inhibition properties of TDPA films on differently structured surfaces of 2024 and 1060 aluminum alloys
  17. Photocatalytic activity of MnWO4 powder in highly effective hydrogen generation from H2O and H2O2
  18. Rheology and microstructure of polymer-modified asphalt nanocomposites
  19. Short Communications
  20. Microstructure and phase composition in a die cast Mg–Nd alloy containing Zn and Zr
  21. DGM News
  22. DGM News
Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110755/html
Button zum nach oben scrollen