Home Sol–gel synthesis of Eu3+, Tb3+ co-doped Y2O3 scintillating nanopowders
Article
Licensed
Unlicensed Requires Authentication

Sol–gel synthesis of Eu3+, Tb3+ co-doped Y2O3 scintillating nanopowders

  • Felipe de Jesús Carrillo Romo , Ángel de Jesús Morales Ramírez , Antonieta García Murillo , Margarita García Hernández , David Jaramillo Vigueras and Vicente Garibay Febles
Published/Copyright: March 26, 2012
Become an author with De Gruyter Brill

Abstract

Y2O3: Eu3+, Tb3+ nanopowders were prepared via the sol–gel process, using yttrium pentadionate, europium, terbium nitrates, and ethanol as precursors. After the sol evaporation at 100°C, the formed gel was annealed from 300 to 900°C for 15 min, and the obtained nanopowders were analyzed by X-ray diffraction to characterize the microstructural behavior and the crystalline structure, which was determined as mainly cubic. The crystallite size varies from 8.6 to 30.9 nm, at 500 and 900°C, respectively. Transmission electron microscopy studies were carried out in order to analyze the microstructure and the size of crystallites. Three different Tb3+ atomic contents (0.005, 0.075, and 0.01 at.%) were used at a fixed Eu3+ level (2.5 at.%) with the aim of determining the relationship between the co-doping content and the scintillation intensity of the well-known 5Do7F2 europium emission band at 611 nm. The results show that at higher Tb3+ contents, a quenching process occurs between Eu3+ and Tb3+; however, even with the lowest Tb3+ content (0.005 at.%), an increment on the scintillation light yield is observed compared with a Eu3+ monodoped sample.


1 Correspondence address: Angel de Jesús Morales Ramírez Ph. D., Cerrada CECATI S/N Col. Sta. CatarinaDel. Azcapotzalco, México D.F. 02250México, Tel.: + 52 55 57 296 000 Ext. 68 312, Fax: + 52 55 61 75 36., E-mail:

Refrences

[1]C.R.Ronda: J. Lumin.72-74 (1997) 49. 10.1016/S0022-2313(96)00374-2Search in Google Scholar

[2]C.H.Kim, C.H.Kwon, C.H.Park, Y.J.Hwang, H.S.Bae, Y.Yu, C.H.Pyunand, G.Y.Hong: J. Alloy. Compd.311 (2000) 33. 10.1016/S0925-8388(00)00856-2Search in Google Scholar

[3]K.G.Cho, D.Kumar, P.H.Holloway, R.K.Singh: Appl. Phys. Lett.73 (1998) 3060.Search in Google Scholar

[4]S.J.Rhee, J.O.White, S.Lee, H.Chen: J. Appl. Phys.90 (2001) 6110. 10.1063/1.1415069Search in Google Scholar

[5]S.S.Yi, J.S.Bae, H.K.Yang, B.K.Moon, B.C.Choi, J.H.Jeong, Y.S.Kim, J.H.Kim: Mater. Sci. Eng. B127 (2006) 159. 10.1016/j.mseb.2005.10.011Search in Google Scholar

[6]M.S.Kwon, H.L.Park, T.W.Kim, Y.Huh, W.Choi, J.YLee: Met. Mater. Int.12 (2006) 263. 10.1007/BF03027541Search in Google Scholar

[7]S.Tanaka, Y.Maruyama, H.Kobayashi, H.Sasakua: J. Electrochem. Soc.123 (1976) 1917. 10.1149/1.2132724Search in Google Scholar

[8]D.Cavouras, I.Kandarakis, G.S.Panayiotakis, E.K.Evangelou, C.D.Nomicos: Med. Phys.23 (1996) 1965. 10.1118/1.597769Search in Google Scholar PubMed

[9]D.R.Morgan, R.A.Sones, G.T.Barnes: Med. Phys.14 (1987) 728. 10.1118/1.596047Search in Google Scholar PubMed

[10]G.Zweig, D.A.Zweig, in: G.D.Fullerton (Ed.), Application of Optical Instrumentation in Medicine XI SPIE Vol. 419 (1983) 297. 10.1118/1.596047Search in Google Scholar

[11]Y.Tian, W.H.Cao, X.X.Lou, Y.Fu: J. Alloys Compd.433 (2007) 313. 10.1016/j.jallcom.2006.06.075Search in Google Scholar

[12]D.Kumar, J.Sankar, K.G.Cho, V.Cracium, R.K.Singh: Appl. Phys. Lett.77 (2000) 2518. 10.1063/1.1318938Search in Google Scholar

[13]Y.E.Lee, D.P.Norton, C.Park, C.M.Rouleau: J. Appl. Phys.89 (2001) 1653. 10.1063/1.1287228Search in Google Scholar

[14]S.L.Jones, D.Kumar, P.K.Sing, P.H.Hollouway: Appl. Phys. Lett.71 (1997) 404. 10.1063/1.119551Search in Google Scholar

[15]T.KAnhT.Ngoc, P.Thunga, V.T.Bich, P.Long, W.Strek: J. Lumin.39 (1988) 215. 10.1016/0022-2313(88)90032-4Search in Google Scholar

[16]P.K.Sharma, H.Jilavi, M.H.Varadan, V.K.Schmidt: J. Lumin.82 (1999) 187. 10.1016/S0022-2313(99)00040-XSearch in Google Scholar

[17]T.K.Anh, L.Q.Minh, N.Vu, T.Y.Houng, N.T.Houng, C.Barthou, W.Strek: J. Lumin.102/103 (2003) 391. 10.1016/S0022-2313(02)00531-8Search in Google Scholar

[18]W.J.Park, S.G.Yoon, D.H.Yoon: J. Electroceram.17 (2006) 41. 10.1007/s10832-006-9933-xSearch in Google Scholar

[19]V.Pelova, K.Kynev, T.Petrova, T.Z.Piperov: Cryst. Res. Technol.33 (1998) 125. 10.1002/(SICI)1521-4079 (1998) 33: 1<125::AID-CRAT125> 3.0.CO;2-KSearch in Google Scholar

[20]Z.Lu, L.Chen, Y.Tang, Y.Li: J. Cryst. Growth276 (2005) 513. 10.1016/j.jcrysgro.2004.11.409Search in Google Scholar

[21]T.Hirai, Y.Kawamura, I.Komasawa: J. Colloid Inter. Sci.275 (2004) 508. 10.1016/j.jcis.2004.02.056Search in Google Scholar PubMed

[22]H.Huang, G.Q.Xu, W.S.Chin, L.M.Gan, C.H.Chew: Nanotechnology13 (2002) 318. 10.1088/0957-4484/13/3/316Search in Google Scholar

[23]Z.Antic, R.Krsmanovic, V.Dorevic, T.Dramicanin, M.D.Dramicanin: Acta Phys. Pol. A116 (2009) 622. 10.1016/j.jcis.2004.02.056Search in Google Scholar

[24]S.Yi, M.Shinozaki, T.Sato: J. Lumin.126 (2007) 427. 10.1016/j.jlumin.2006.08.096Search in Google Scholar

[25]S.Kang, H.Y.Park, D.S.Bae: J. Electroceram.23 (2009) 492. 10.1007/s10832-008-9515-1Search in Google Scholar

[26]Y.Tao, G.Zhao, X.Ju, X.Shao, W.Zhang, S.Xia: Mater. Lett.28 (1996) 137. 10.1016/0167-577X(96)00041-9Search in Google Scholar

[27]R.Subramanian, P.Shankar, S.Kavithaa, S.S.Ramakrishan, P.C.Angelo, H.Venkataraman: Mater. Lett.48 (2001) 342. 10.1016/S0167-577X(00)00324-4Search in Google Scholar

[28]Z.Yongqing, Y.Zihua, D.Shiwen, Q.Mande, Z.Jian: Mater. Lett.57 (2003) 2901. 10.1016/S0167-577X(02)01394-0Search in Google Scholar

[29]A.Pandey, A.Pandey, M.K.Roy, H.C.Verma: Mater. Chem. Phys.96 (2006) 466. 10.1016/j.matchemphys.2005.07.037Search in Google Scholar

[30]M.S.Kwon, H.L.Park, T.W.Kim, Y.Huh, W.Choi, J.Y.Lee: Met. Mater. Int.12 (2006) 263. 10.1007/BF03027541Search in Google Scholar

[31]J.M.Nedelec: J. Nanomaterials2007 (2007) 1. 10.1155/2007/36392Search in Google Scholar

[32]T.Anh, N.Vu, M.H.Nam, L.Minh: Adv. Nat. Sci.7 (2006) 63. 10.1016/j.matchemphys.2005.07.037Search in Google Scholar

[33]T.Anh, P.Benalloul, C.Barthou, L.T.Giang, N.Vu, L.Minh: J. Nanomaterials2007 (2007) 48247. 10.1155/2007/48247Search in Google Scholar

[34]S.Mukherjee, V.Sudarsan, R.K.Vatsa, S.V.Godbole, R.M.Kadam, U.M.BhattaA.K.Tyagi: Nanotechnology19 (2008) 325704. 10.1088/0957-4484/19/32/325704Search in Google Scholar PubMed

[35]Z.Liu, L.Yu, Q.Wang, Y.Tao, H.Yang: J. Lumin.131 (2011) 12. 10.1016/j.jlumin.2010.08.012Search in Google Scholar

[36]D.C.Bradley, R.C.Mehrota, D.P.Gaur: Metal Alcoxides, Saunders Collage Publishing/Harcourt Brace, New York, USA (1978). 10.1155/2007/48247Search in Google Scholar

[37]B.Guo, Z.P.Luo: J. Am. Ceram. Soc.91 (1998) 1653. 10.1111/j.1551-2916.2008.02341.xSearch in Google Scholar

[38]A.Camenzind, R.Strober, S.E.Pratsinis: Chem. Phys. Lett.415 (2005) 193. 10.1016/j.cplett.2005.09.002Search in Google Scholar

[39]B.D.Culliti: Elements of X-Ray diffraction, 2nd edn.Addison-Wesley, Reading, MA, USA (1978). 10.1016/j.jlumin.2010.08.012Search in Google Scholar

[40]J.Zhang, Z.Tang, Z.Zhang, W.Fu, J.Wang, Y.Lin: Mater. Sci. Eng. A334 (2002) 246. 10.1016/S0921-5093(01)01812-3Search in Google Scholar

[41]M.L.Pang, J.Lin, Z.Y.Cheng, J.Fu, R.B.Xing, S.B.Wang: Mater. Sci. Eng. B100 (2003) 124. 10.1016/S0921-5107(03)00081-3Search in Google Scholar

[42]X.Qin, Y.Yu, S.Bernhard, N.Yao: J. Mater. Res.20 (2005) 2960. 10.1557/JMR.2005.0364Search in Google Scholar

[43]A.J.Morales, A.Garcia, F.J.Carrillo, M.García, D.Jaramillo, G.Chadeyron, D.Boyer: Mater. Res. Bull.45 (2010) 40. 10.1016/j.materresbull.2009.09.005Search in Google Scholar

[44]W.C.Chien: J. Cryst. Growth290 (2006) 554. 10.1016/j.jcrysgro.2006.01.042Search in Google Scholar

[45]K.Y.Jung, C.H.Lee, Y.C.Kang: Mater. Lett.59 (2005) 2451. 10.1016/j.matlet.2005.03.017Search in Google Scholar

Received: 2011-1-6
Accepted: 2012-2-9
Published Online: 2012-03-26
Published in Print: 2012-10-01

© 2012, Carl Hanser Verlag, Munich

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Phase equilibria in the Gd–Ni binary and Mg–Ni–Gd ternary systems
  5. Thermodynamics of dilute binary solid solutions using the cluster variation method
  6. Thermal stability of coherent Pd/TiAl interfaces studied from first-principles calculations and experiments
  7. Electropulsing-induced phase transformations and their effects on the single point diamond turning of a tempered alloy AZ91
  8. Study of the mechanism of ductile-regime grinding of SiCp/Al composites using finite element simulation
  9. Investigations on laser welding of magnesium alloys
  10. Investigation of the surface of a laser-treated cast iron cylinder bore
  11. Solidification behaviour of an AA5754 Al alloy ingot cast with high impurity content
  12. Study of the structural evolution of crystalline zinc oxide films prepared by PLD
  13. Effects of sintering temperature on pore characterization and strength of porous cordierite–mullite ceramics by a pore-forming in-situ technique
  14. Sol–gel synthesis of Eu3+, Tb3+ co-doped Y2O3 scintillating nanopowders
  15. Morphological study of SiC coating developed on 2D carbon composites using MTS precursor in a hot-wall vertical reactor
  16. Self-assembling behavior and corrosion inhibition properties of TDPA films on differently structured surfaces of 2024 and 1060 aluminum alloys
  17. Photocatalytic activity of MnWO4 powder in highly effective hydrogen generation from H2O and H2O2
  18. Rheology and microstructure of polymer-modified asphalt nanocomposites
  19. Short Communications
  20. Microstructure and phase composition in a die cast Mg–Nd alloy containing Zn and Zr
  21. DGM News
  22. DGM News
Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110761/html
Scroll to top button