Study of the mechanism of ductile-regime grinding of SiCp/Al composites using finite element simulation
-
Shutao Huang
, Li Zhou , Xiaolin Yu and Lifu Xu
Abstract
Based on indentation experiments under different loads, the mechanism of ductile-regime grinding of SiCp/Al composites has been investigated. The factors that influence the ductile-regime removal of SiC particles, such as tip radius of abrasive grains, intrusion depth, and volume fraction of SiC particles, have been analyzed by three-dimensional finite element simulation. The calculation results indicate that a sharp abrasive grain without tip radius cannot produce a plastic deformation region under the indenter and brittle fracture of the SiC particle takes place rather than ductile model of failure. The critical grinding depth of ductile-regime removal decreases with increasing tip radius of abrasive grains, but increases with decreasing SiC particle volume fraction.
Refrences
[1]K.B.Rajesh, K.Sudhir, S.Das: Int. J. Adv. Manuf. Technol.50 (2010) 459. 10.1007/s00170-010-2529-2Search in Google Scholar
[2]R.Teti: CIRP Ann.51 (2002) 611. 10.1016/S0007-8506(07)61703-XSearch in Google Scholar
[3]J.-I.Jang, M.J.Lance, S.Q.Wen, T.Y.Tsui, G.M.Pharr: Acta. Mater.53 (2005) 1759. 10.1016/j.actamat.2004.12.025Search in Google Scholar
[4]D.Chrobak, K.Nordlund, R.Nowak: Phys. Rev. Lett.98 (2007) 045502. 17358785 10.1103/PhysRevLett.98.045502Search in Google Scholar
[5]J.A.Patten, R.Fesperman, S.Kumar, S.McSpadden, J.Qu, M.Lance, R.Nemanich, J.Huening: Appl. Phys. Lett.83 (2003) 4740. 10.1063/1.1632031Search in Google Scholar
[6]J.A.Patten, W.Gao, K.Yasuto: J. Manuf. Sci. Eng.127 (2005) 522. 10.1115/1.1949614Search in Google Scholar
[7]M.Mishra, I.Szlufarska: Acta Mater.57 (2009) 6156. 10.1016/j.actamat.2009.08.041Search in Google Scholar
[8]J.A.Patten, J.Jacob: J. Manuf. Processes10 (2008) 28. 10.1016/j.jmapro.2008.08.001Search in Google Scholar
[9]T.G.Bifano, T.A.Dow, R.O.Scattergood: J. Eng. Ind. T. ASME113 (1991) 184. 10.1115/1.2899676Search in Google Scholar
[10]W.Konig, V.Sinhoff: SPIE, Lens and Optical Systems Design (1992) 778. 10.1115/1.2899676Search in Google Scholar
[11]W.S.Blackley, R.O.Scattergood: Precis. Eng.13 (1991) 95. 10.1016/0141-6359(91)90500-ISearch in Google Scholar
[12]M.J.Chen, Q.L.Zhao, S.L.D.Dong: J. Mater. Process. Technol.168 (2005) 75. 10.1016/j.jmatprotec.2004.11.002Search in Google Scholar
[13]T.G.Bifano, S.C.Fawcett: Precis. Eng.13 (1991) 256. 10.1016/0141-6359(91)90003-2Search in Google Scholar
[14]W.Z.Zhao, P.H.Nguyen: J. Mater. Process. Technol.123 (2002) 13. 10.1016/S0924-0136(02)00075-4Search in Google Scholar
[15]G.Subhash, J.E.Loukus, S.M.Pandit: Mech. Mater.34 (2002) 25. 10.1016/S0167-6636(01)00083-7Search in Google Scholar
[16]C.L.Chao, K.J.Ma, D.S.Liu, C.Y.Bai, T.L.Shy: J. Mater. Process. Technol.127 (2002) 187. 10.1016/S0924-0136(02)00124-3Search in Google Scholar
[17]R.G.Jasinevicius: J. Mater. Process. Technol.179 (2006) 111. 10.1016/j.jmatprotec.2006.03.106Search in Google Scholar
[18]W.Zhang, G.Subhash: Int. J. Solids Struct.38 (2001) 5893. 10.1016/S0020-7683(00)00406-6Search in Google Scholar
[19]B.Zhang, M.Yoshioka, S.Hira: J. Mater. Process. Technol.208 (2008) 171. 10.1016/j.jmatprotec.2007.12.141Search in Google Scholar
[20]A.Yonezu, B.X.Xu, X.Chen: Mater. Sci. Eng. A507 (2009) 226. 10.1016/j.msea.2008.12.001Search in Google Scholar
[21]W.Zhang, G.Subhash: Int. J. Solids Struct.38 (2001) 5893. 10.1016/j.msea.2008.12.001Search in Google Scholar
[22]H.P.Chen, R.K.Kalia, A.Nakano, P.Vashishta, I.Szlufarska: J. Appl. Phys.102 (2007) 9. 10.1016/S0020-7683(00)00406-6Search in Google Scholar
[23]A.Pramanik, L.C.Zhang, J.A.Arsecularatne: Int. J. Mach. Tools Manuf.46 (2006) 1795. 10.1016/j.ijmachtools.2005.11.012Search in Google Scholar
[24]B.P.O'Connor, E.R.Marsh, J.A.Couey: Precis. Eng.29 (2005) 124. 10.1016/j.precisioneng.2004.05.004Search in Google Scholar
[25]E.Brinksmeier, Y.Mutlugunes, F.Klocke, J.C.Aurich, P.Shore, H.Ohmori: CIRP Annals – Manuf. Technol.59 (2010) 652. 10.1016/j.precisioneng.2004.05.004Search in Google Scholar
[26]M.Yoshino, T.Aoki, N.Chandrasekaran, T.Shirakashi, R.Komanduri: Int. J. Mech. Sci.43 (2001) 313. 10.1016/S0020-7403(00)00018-7Search in Google Scholar
© 2012, Carl Hanser Verlag, Munich
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Phase equilibria in the Gd–Ni binary and Mg–Ni–Gd ternary systems
- Thermodynamics of dilute binary solid solutions using the cluster variation method
- Thermal stability of coherent Pd/TiAl interfaces studied from first-principles calculations and experiments
- Electropulsing-induced phase transformations and their effects on the single point diamond turning of a tempered alloy AZ91
- Study of the mechanism of ductile-regime grinding of SiCp/Al composites using finite element simulation
- Investigations on laser welding of magnesium alloys
- Investigation of the surface of a laser-treated cast iron cylinder bore
- Solidification behaviour of an AA5754 Al alloy ingot cast with high impurity content
- Study of the structural evolution of crystalline zinc oxide films prepared by PLD
- Effects of sintering temperature on pore characterization and strength of porous cordierite–mullite ceramics by a pore-forming in-situ technique
- Sol–gel synthesis of Eu3+, Tb3+ co-doped Y2O3 scintillating nanopowders
- Morphological study of SiC coating developed on 2D carbon composites using MTS precursor in a hot-wall vertical reactor
- Self-assembling behavior and corrosion inhibition properties of TDPA films on differently structured surfaces of 2024 and 1060 aluminum alloys
- Photocatalytic activity of MnWO4 powder in highly effective hydrogen generation from H2O and H2O2
- Rheology and microstructure of polymer-modified asphalt nanocomposites
- Short Communications
- Microstructure and phase composition in a die cast Mg–Nd alloy containing Zn and Zr
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Phase equilibria in the Gd–Ni binary and Mg–Ni–Gd ternary systems
- Thermodynamics of dilute binary solid solutions using the cluster variation method
- Thermal stability of coherent Pd/TiAl interfaces studied from first-principles calculations and experiments
- Electropulsing-induced phase transformations and their effects on the single point diamond turning of a tempered alloy AZ91
- Study of the mechanism of ductile-regime grinding of SiCp/Al composites using finite element simulation
- Investigations on laser welding of magnesium alloys
- Investigation of the surface of a laser-treated cast iron cylinder bore
- Solidification behaviour of an AA5754 Al alloy ingot cast with high impurity content
- Study of the structural evolution of crystalline zinc oxide films prepared by PLD
- Effects of sintering temperature on pore characterization and strength of porous cordierite–mullite ceramics by a pore-forming in-situ technique
- Sol–gel synthesis of Eu3+, Tb3+ co-doped Y2O3 scintillating nanopowders
- Morphological study of SiC coating developed on 2D carbon composites using MTS precursor in a hot-wall vertical reactor
- Self-assembling behavior and corrosion inhibition properties of TDPA films on differently structured surfaces of 2024 and 1060 aluminum alloys
- Photocatalytic activity of MnWO4 powder in highly effective hydrogen generation from H2O and H2O2
- Rheology and microstructure of polymer-modified asphalt nanocomposites
- Short Communications
- Microstructure and phase composition in a die cast Mg–Nd alloy containing Zn and Zr
- DGM News
- DGM News