Home Phase equilibria in the “SnO”–SiO2–“FeO” system in equilibrium with tin–iron alloy and the potential application for electronic scrap recycling
Article
Licensed
Unlicensed Requires Authentication

Phase equilibria in the “SnO”–SiO2–“FeO” system in equilibrium with tin–iron alloy and the potential application for electronic scrap recycling

  • Xiaoyong Xu , Peter C. Hayes and Evgueni Jak
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Experimental studies have been conducted to determine the primary phases and liquidus temperatures in the pseudo-binary system “SnO”–“FeO” and the pseudo-ternary system “SnO”–SiO2–“FeO” in equilibrium with tin–iron alloy between 1148 and 1673 K, using a high-temperature equilibration and quenching technique followed by electron probe X-ray microanalysis of the phase compositions in the quenched samples. The following primary phase fields were identified: wustite (FeOx), spinel (Fe(3x)SnxO4), fayalite (Fe2SiO4), tridymite (SiO2), tin iron silicate (Fe4Si2Sn7O16), and cassiterite (SnO2). With this new information on the chemistry of the “SnO”–SiO2–“FeO” slag this system may potentially be used for the processing and recycling of electronic scrap and the recovery of valuable minor elements.


* Correspondence address Mr. Xiaoyong Xu The Pyrometallurgy Research Centre at the School of Chemical EngineeringThe University of QueenslandBrisbane Qld 4072, Australia Tel.: +61 7 3365 4088 E-mail:

References

[1] C.H.Lee, C.T.Chang, K.S.Fan, T.C.Chang: J. Hazard. Mater.114 (2004) 93. PMid: 15511578; 10.1016/j.jhazmat.2004.07.013Search in Google Scholar

[2] J.Li, P.Shrivatasta, Z.Gao, H.C.Zhang: IEEE Trans. Electron. Packag. Manuf.27 (2004) 33. 10.1109/TEPM.2004.830501Search in Google Scholar

[3] S.A.Shuey, P.Taylor: Min. Eng. (2005) 67.Search in Google Scholar

[4] I.E.Anderson, K.Kirkland, W.Willenberg: SMT Nov (2000) 78.Search in Google Scholar

[5] T.R.A.Davey, in: J.M.Cigan, T.S.Mackey, T.J.O'Keefe (Eds.) Lead-Zinc-Tin ′80, TMS-AIME, Warrendale, Las Vegas (1980) 48.Search in Google Scholar

[6] T.R.A.Davey, J.M.Floyd: Proc. Australas. Inst. Min. Metall.219 (1966) 1.Search in Google Scholar

[7] W.J.Rankin, A.K.Biswas: Proc. Australas. Inst. Min. Metall.249 (1974) 5.Search in Google Scholar

[8] W.J.Rankin: Metall. Trans. B17 (1986) 61. 10.1007/BF02670819Search in Google Scholar

[9] Y.Takeda, A.Yazawa, P.P.Chit, H.Ujiie: Mater. Trans., JIM31 (1990) 793.Search in Google Scholar

[10] A.D.Pelton, M.Blander: Metall. Trans. B17 (1986) 805. 10.1007/BF02657144Search in Google Scholar

[11] M.Selleby: Metall. Trans. B28 (1997) 563.10.1007/s11663-997-0029-zSearch in Google Scholar

[12] O.B.Fabrichnaya, B.Sundman: Geochimica Et Cosmochimica Acta61 (1997) 4539. 10.1016/S0016-7037(97)00256-1Search in Google Scholar

[13] G.Paparon, D.Walker, J.D.Webster: Amer. Miner.95 (2010) 784. 10.2138/am.2010.3319Search in Google Scholar

[14] X.Xu, P.C.Hayes, E.Jak: Int. J. Mater. Res. Under review (2011).Search in Google Scholar

[15] F.J.Berry, O.Helgason, K.Jonson, S.J.Skinner: J. Solid State Chem.122 (1996) 353. 10.1006/jssc.1996.0126Search in Google Scholar

[16] F.J.Berry, S.J.Skinne, O.Helgason, R.Bilsborrow, J.F.Marco: Polyhedron17 (1998) 149. 10.1016/S0277-5387(97)00212-XSearch in Google Scholar

[17] T.Sohnel, P.Bottcher, W.Reichelt, F.E.Wagner: Z. Anorg. Allg. Chem.624 (1998) 708. 10.1002/(SICI)1521-3749(199804)624:4<708::AID-ZAAC708>3.0.CO;2-TSearch in Google Scholar

[18] E.Jak, P.C.Hayes: VII Int. Conf. on Molten Slags Fluxes and Salts Capetown, SAImm, Johannesburg (2004) 85.Search in Google Scholar

[19] S.Nikolic, P.C.Hayes, E.Jak: Metall. Mater. Trans. B39 (2008) 179. 10.1007/s11663-008-9130-1Search in Google Scholar

[20] E.Jak, B.Zhao, S.Nikolic, P.C.Hayes: European Metallurgy Conference 4 (2007) 1789.Search in Google Scholar

[21] L.S.Darken, R.W.Gurry: J. Am. Chem. Soc.68 (1946) 798. 10.1021/ja01209a030Search in Google Scholar

Received: 2011-5-15
Accepted: 2011-12-23
Published Online: 2013-06-11
Published in Print: 2012-05-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Phase equilibria in the “SnO”–SiO2–“FeO” system in equilibrium with tin–iron alloy and the potential application for electronic scrap recycling
  5. A model to calculate the viscosity of silicate melts
  6. Surface structure of different interstitial austenitic steels after impact wear
  7. Microstructural study of boron-doped Co–Re–Cr alloys by means of transmission electron microscopy and electron energy-loss spectroscopy
  8. Orientation relationship between 14H-LPSO structured X phase and DO3-type (Mg,Zn)3RE phase in an Mg–Gd–Y–Zn–Zr alloy
  9. Microstructural, optical, and dielectric properties of nanocrystalline TiO2 films prepared via ion-assisted magnetron sputtering
  10. An investigation of the microstructure and properties of the explosively welded Gr5–SS304 clad plates for golf heads
  11. Cyclic fibre texture in hot extruded Ni50Mn29Ga21
  12. Development of high-strength pure magnesium and wrought magnesium alloys AZ31, AZ61, and AZ91 processed by hydrostatic extrusion with back pressure
  13. Effect of cerium and aluminium on the hot-deformation behaviour of magnesium
  14. Effect of alloying elements on stage-III work-hardening behaviour of Al–Zn–Mg(–Cu) alloys
  15. Effect of titanium on the as-cast microstructure and impact toughness of hypereutectic high-chromium cast iron
  16. Microstructure and mechanical properties of nanocrystalline WC-particle-reinforced Ti-based composites with nano/ultrafine-grained intermetallic matrix from spark plasma sintering and crystallization of amorphous phase
  17. Plasticity enhancement in centrally confined Zr-based bulk metallic glass
  18. In-situ observation of the fracture process in Al–Zn–Mg–Cu alloys
  19. Relationship between the mechanical properties and the surface roughness of marble
  20. Light, multi-layer, screening textiles with a high capacity for absorbing electromagnetic fields in the high frequency range
  21. Immobilization of zinc oxide nanoparticles on cotton fabrics using poly 4-styrenesulfonic acid polyelectrolyte
  22. People
  23. Prof. Dr. rer. nat. Ludwig Schultz
  24. DGM News
  25. DGM News
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110736/html
Scroll to top button