Home Technology In-situ observation of the fracture process in Al–Zn–Mg–Cu alloys
Article
Licensed
Unlicensed Requires Authentication

In-situ observation of the fracture process in Al–Zn–Mg–Cu alloys

  • Maja Vratnica
Published/Copyright: June 11, 2013

Abstract

In order to investigate the fracture behaviour of highly-alloyed Al–Zn–Mg–Cu alloys as a function of alloy purity, in-situ observations using scanning electron microscopy were performed during tensile testing. The observations were used to verify proposed fracture mechanisms in conjunction with microstructural and fractographic analyses along with fracture toughness tests. It was found that the fracture process is complex. The nucleation, growth, and coalescence of voids precede ductile fracture of the alloys. The decohesion and fracture of intermetallic particles (generally >1 μm in diameter) appears to be the initial event in the fracture process, while mechanism and propagation rate of fracture depend on the alloy chemistry. A tortuous crack path and reduced crack propagation rate in the least pure alloy can be closely related to a strong interaction of the crack front with intermetallic particles.


* Correspondence address Dr. Maja Vratnica Faculty of Metallurgy and Technology, University of MontenegroDžorža Vašingtona bb, 20 000 Podgorica, Montenegro Tel.: + 382-20-245-406 Fax: + 382-20-245-406 E-mail:

References

[1] B.Veljanovski, S.Sedmak, A.Radović, M.Pavlović, in: S.Sedmak, A.Sedmak (Eds.), Proc. ECF 9, Vol. 1, EMAS, Varna (1992) 133.Search in Google Scholar

[2] D.Dumont, A.Deschamps, Y.Brechet: Acta Mater.52 (2004) 2529. 10.1016/j.actamat.2004.01.044Search in Google Scholar

[3] O.Wouters, J.Th.M.De Hosson: Mater. Sci. Eng. A361 (2003) 331. 10.1016/S0921-5093(03)00521-5Search in Google Scholar

[4] A.C.Reddy, S.S.Rajan: Bull. Mater. Sci.28 (2005) 75. 10.1007/BF02711176Search in Google Scholar

[5] G.Mrówka-Nowotnik: Archives Mater. Sci. Eng.29 (2008) 93.Search in Google Scholar

[6] G.Mrówka-Nowotnik: J. Achievements Mater. Manuf. Eng.30 (2008) 35.Search in Google Scholar

[7] P.F.Thomason: Ductile Fracture of Metals, Pergamon Press, Oxford (1990).Search in Google Scholar

[8] A.Weck, T.H.R.Crawford, A.Borowiec, D.S.Wilkinson, J.S.Preston: App. Phys. A86 (2008) 55. 10.1007/s00339-006-3730-xSearch in Google Scholar

[9] D.Dumont, A.Deschamps, Y.Brechet: Mater. Sci. Eng. A356 (2003) 326. 10.1016/S0921-5093(03)00145-XSearch in Google Scholar

[10] P.Málek, M.Cieslar: Mater. Sci. Eng. A324 (2002) 90. 10.1016/S0921-5093(01)01289-8Search in Google Scholar

[11] R.Ayer, J.Y.Koo, J.W.Steeds, B.K.Park: Metall. Trans. A16 (1985) 1925.Search in Google Scholar

[12] R.Gürbüz, S.P.Alpay: Scr. Metall. Mater.30 (1994) 1373. 10.1016/0956-716X(94)90230-5Search in Google Scholar

[13] X.M.Li, M.J.Starink: Mater. Sci. Techn.17 (2001) 1324. 10.1179/026708301773002482Search in Google Scholar

[14] N.Kamp, I.Sinclair, M.J.Starink: Metall. Mater. Trans. A33 (2002) 1125. 10.1007/s11661-002-0214-2Search in Google Scholar

[15] P.Málek, M.Cieslar, R.K.Islamgaliev: J. Alloys Comp.378 (2004) 237. 10.1016/j.jallcom.2003.11.161Search in Google Scholar

[16] A.George, Jr.Young, J.R. Scully: Metall. Mater. Trans. A33 (2002) 1167.Search in Google Scholar

[17] M.J.Starink, S.C.Wang: Acta Mater.51(2003) 5131. 10.1016/S1359-6454(03)00363-XSearch in Google Scholar

[18] R.Ratzi, F.Jeglitsch, F.Kutner: Aluminium68 (1981) 637.Search in Google Scholar

[19] E.Kovács-Csetényi, K.Banizs, T.Turmezey, K.Šperlink: Aluminium68 (1992) 415.Search in Google Scholar

[20] M.Vratnica, Z.Cvijović, H.P.Degischer, G.C.Requena, G.Rumpl-mair, M.Rakin: Mater. Sci. For.494 (2005) 217. 10.4028/www.scientific.net/MSF.494.217Search in Google Scholar

[21] M.Vratnica, Z.Cvijović, K.Gerić, Z.Burzić: Mater. Sci. For.555 (2007) 553. 10.4028/www.scientific.net/MSF.555.553Search in Google Scholar

[22] Z.Cvijović, M.Rakin, M.Vratnica, I.Cvijović: Eng. Frac. Mech.75 (2008) 2115. 10.1016/j.engfracmech.2007.10.010Search in Google Scholar

[23] Z.Cvijović, M.VratnicaK.Gerić: J. Micro.232 (2008) 589.Search in Google Scholar

[24] Z.Cvijović, M.Vratnica, M.Rakin, I.Cvijović-Alagić: Phil. Mag.88 (2008) 3153. 10.1080/14786430802502559Search in Google Scholar

[25] M.Vratnica, Z.Cvijović, H.P.Degischer, G.C.Requena: J. Micro.224 (2006) 117. PMid: 17100922; 10.1111/j.1365-2818.2006.01683.xSearch in Google Scholar PubMed

[26] M.Vratnica, Z.Cvijović, M.Rakin: Mater. Sci. For.453–454 (2004) 181. 10.4028/www.scientific.net/MSF.453-454.181Search in Google Scholar

[27] Z.Cvijović, I.Cvijović, M.Vratnica: J. Alloys Comp.441 (2007) 66. 10.1016/j.jallcom.2006.09.061Search in Google Scholar

[28] Z.Cvijović, M.Vratnica, M.Rakin: Mater. Sci. Eng. A434 (2006) 339. 10.1016/j.msea.2006.07.018Search in Google Scholar

[29] M.Vratnica, Z.Cvijović, N.Radović: Mater. Techn.42 (2008) 191.Search in Google Scholar

[30] T.Fukui: Mater. Trans., JIM15 (1974) 1.10.2320/matertrans1960.15.1Search in Google Scholar

[31] M.R.Hill, T.L.Panontin: Eng. Frac. Mech.69 (2002) 2163. 10.1016/S0013-7944(01)00148-5Search in Google Scholar

[32] G.G.Garrett, J.F.Knott: Metall. Trans. A9 (1978) 1187. 10.1007/BF02652242Search in Google Scholar

[33] G.Patton, C.Rinaldi, Y.Brechet, G.Lormand, R.Fongeres: Mater. Sci. Eng. A254 (1998) 207. 10.1016/S0921-5093(98)00762-XSearch in Google Scholar

[34] H.Toda, A.Takahashi, T.Kobayashi: Mater. Sci. Forum331–337 (2000) 1261.Search in Google Scholar

[35] G.Mrówka-Nowotnik, J.Sieniawski, A.Nowotnik: J. Achievements Mater. Manuf. Eng.32 (2009) 162.Search in Google Scholar

[36] B.Morere, J.-C.Ehrström, P.J.Gregson, I.Sinclair: Metall. Mater. Trans. A31 (2000) 2503. 10.1007/s11661-000-0195-ySearch in Google Scholar

[37] J.H.Chen, R.Cao, G.Z.Wang, J.Zhang: Metall. Mater. Trans. A35 (2004) 439. 10.1007/s11661-004-0355-6Search in Google Scholar

[38] N.U.Deshpande, A.M.Gokhale, D.K.Denzer, J.Liu: Metall. Mater. Trans. A29 (1998) 1191. 10.1007/s11661-998-0246-3Search in Google Scholar

[39] A.M.Camacho, H.V.Atkinson, P.Kapranos, B.B.Argent: Acta Mater.51 (2003) 2319. 10.1016/S1359-6454(03)00040-5Search in Google Scholar

[40] T.Pardeon, D.Dumont, A.Deschamps, Y.Brechet: J. Mech. Phys. Solids51 (2003) 637. 10.1016/S0022-5096(02)00102-3Search in Google Scholar

[41] J.T.Staley: Aluminium55 (1979) 277.10.1007/978-1-349-04078-0_4Search in Google Scholar

[42] B.L.Jo, D.S.Park, S.W.Nam: Metall. Mater. Trans. A27 (1996) 490. 10.1007/BF02648431Search in Google Scholar

[43] T.F.Morgeneyer, M.J.Starink, I.Sinclair: Acta Mater.56 (2008) 1671. 10.1016/j.actamat.2007.12.019Search in Google Scholar

[44] M.Vratnica, G.Pluvinage, P.Jodin, Z.Cvijović, M.Rakin, Z.Burzić: Mater. Des.31(2010) 1790. 10.1016/j.matdes.2009.11.018Search in Google Scholar

Received: 2011-4-5
Accepted: 2011-12-19
Published Online: 2013-06-11
Published in Print: 2012-05-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Phase equilibria in the “SnO”–SiO2–“FeO” system in equilibrium with tin–iron alloy and the potential application for electronic scrap recycling
  5. A model to calculate the viscosity of silicate melts
  6. Surface structure of different interstitial austenitic steels after impact wear
  7. Microstructural study of boron-doped Co–Re–Cr alloys by means of transmission electron microscopy and electron energy-loss spectroscopy
  8. Orientation relationship between 14H-LPSO structured X phase and DO3-type (Mg,Zn)3RE phase in an Mg–Gd–Y–Zn–Zr alloy
  9. Microstructural, optical, and dielectric properties of nanocrystalline TiO2 films prepared via ion-assisted magnetron sputtering
  10. An investigation of the microstructure and properties of the explosively welded Gr5–SS304 clad plates for golf heads
  11. Cyclic fibre texture in hot extruded Ni50Mn29Ga21
  12. Development of high-strength pure magnesium and wrought magnesium alloys AZ31, AZ61, and AZ91 processed by hydrostatic extrusion with back pressure
  13. Effect of cerium and aluminium on the hot-deformation behaviour of magnesium
  14. Effect of alloying elements on stage-III work-hardening behaviour of Al–Zn–Mg(–Cu) alloys
  15. Effect of titanium on the as-cast microstructure and impact toughness of hypereutectic high-chromium cast iron
  16. Microstructure and mechanical properties of nanocrystalline WC-particle-reinforced Ti-based composites with nano/ultrafine-grained intermetallic matrix from spark plasma sintering and crystallization of amorphous phase
  17. Plasticity enhancement in centrally confined Zr-based bulk metallic glass
  18. In-situ observation of the fracture process in Al–Zn–Mg–Cu alloys
  19. Relationship between the mechanical properties and the surface roughness of marble
  20. Light, multi-layer, screening textiles with a high capacity for absorbing electromagnetic fields in the high frequency range
  21. Immobilization of zinc oxide nanoparticles on cotton fabrics using poly 4-styrenesulfonic acid polyelectrolyte
  22. People
  23. Prof. Dr. rer. nat. Ludwig Schultz
  24. DGM News
  25. DGM News
Downloaded on 19.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110731/html
Scroll to top button