Development of high-strength pure magnesium and wrought magnesium alloys AZ31, AZ61, and AZ91 processed by hydrostatic extrusion with back pressure
-
Wacek Pachla
, Andrzej Mazur , Jacek Skiba , Mariusz Kulczyk and Sylwia Przybysz
Abstract
Cold hydrostatic extrusion with and without back pressure of commercial Mg 99.5+% and AZ31, AZ61, and AZ91 wrought magnesium alloys has been performed on a press operating up to 2000 MPa with a back pressure reaching up to 700 MPa. Application of back pressure extended the formability of Mg, and AZ-type magnesium alloys, which decreases with the increase in the Al content. Fibrous and elongated grains above 1 micrometre and nanometre scale sub-grains and grains were observed. The strength of all materials was significantly higher in comparison to materials conventionally and hydrostatically hot-extruded, hot ECAP-ed or after hot wire drawing. In comparison to materials processed by traditional methods the ultimate tensile strength increment after hydrostatic extrusion with back pressure increases gradually with an increase in Al content reaching for AZ91 almost 40%. The potential application of AZ-type magnesium alloys as semi-products for degradable medical implants or high strength structural components is indicated.
References
[1] J.Bohlen, J.Swiostek, W.H.Sillekens, P.-J.Vet, D.Letzig, K.U.Kainer, in: N.R.Neelameggham, H.I.Kaplan, B.R.Powell (Eds.), Proc. TMS Annual Meeting-Symposium on Magnesium Technology, San Francisco, USA; Magnesium Technology TMS (The Minerals, Metals & Materials Society) (2005).Search in Google Scholar
[2] Z.Yang, J.P.Li, J.X.Zhang, G.W.Lorimer, J.Robson: Acta Metall. Sin. (Engl. Lett.)21 (2008) 313.Search in Google Scholar
[3] G.A.Chadwick: Metallography and phase transformations, London (1972).Search in Google Scholar
[4] K.Máthis, J.Gubicza, N.H.Nam: J. Alloys Compd.394 (2005) 194. 10.1016/j.jallcom.2004.10.050Search in Google Scholar
[5] H.J.McQueen, M.Myshlaev, M.Sauerborn, A.Mwembela, in: H.I.Kaplan (Ed.) Magnesium Technology, The Minerals, Metals & Materials Society (2000) 355.Search in Google Scholar
[6] T.-C.Chang, J.-Y.Wang, C.-M.O, S.Lee: J. Mater. Process. Technol.140 (2003) 588. 10.1016/S0924-0136(03)00797-0Search in Google Scholar
[7] M.Chandrasekaran, Y.M.S.John: Mater. Sci. Eng. A381 (2004) 308. 10.1016/j.msea.2004.04.057Search in Google Scholar
[8] R.M.Wang, A.Eliezer, E.Gutman: Mater. Sci. Eng. A344 (2002) 279. 10.1016/S0921-5093(02)00413-6Search in Google Scholar
[9] N.V.Ravi Kumar, J.J.Blandin, C.Desrayaud, F.Montheillet. M.Suéry: Mater. Sci. Eng. A359 (2003) 150. 10.1016/S0921-5093(03)00334-4Search in Google Scholar
[10] W.H.Sillekens, J.A.F.M.Schade van Westrum, A.J.den Bakker, P.-J.Vet: Mater. Sci. Forum426–432 (2003) 629.Search in Google Scholar
[11] D.L.Atwell, M.R.Barnett: Metall. Mater. Trans. A38 (2007) 3032. 10.1007/s11661-007-9323-2Search in Google Scholar
[12] J.Swiostek, J.Göken, D.Letzig, K.U.Kainer: Mater. Sci. Eng. A424 (2006) 223. 10.1016/j.msea.2006.03.021Search in Google Scholar
[13] J.Swiostek, D.Letzing, K.U.Kainer: Met. Sci. Heat Treat.48 (2006) 499. 10.1007/s11041-006-0125-8Search in Google Scholar
[14] J.Bohlen, S.B.Yi, J.Swiostek, D.Letzig, H.G.Brokmeir, K.U.Kainer: Scripta Mater.53 (2005) 259. 10.1016/j.scriptamat.2005.03.036Search in Google Scholar
[15] D.-J.Yoon, S.Lee, S.-J.Lim, E.-Z.Kim: J. Mech. Sci. Technol.24 (2010) 131. 10.1007/s12206-009-1203-9Search in Google Scholar
[16] H.Ll.D.Pugh, D.Green: National Engineering Laboratory, East Kilbride, Glasgow, MERL Plasticity Report No.147 (1958).Search in Google Scholar
[17] H.Ll.D.Pugh, D.Gunn: “Symposium on the Physics and Chemistry of High Pressures” Society of Chemical Industry, London (1963) 157.Search in Google Scholar
[18] H-W.Wagener, J.Hosse-Hartmann, R.Friz: Adv. Engin. Mater.5 (2003) 237. 10.1002/adem.200300329Search in Google Scholar
[19] K.Xia, J.T.Wang, X.Wu, G.Chen, M.Gurvan: Mater. Sci. Eng. A410–411 (2005) 324. 10.1016/j.msea.2005.08.123Search in Google Scholar
[20] H.Ll.D.Pugh (Ed.) “Mechanical behaviour of materials under pressure” Elsevier Publ. Co. Ltd., Amsterdam (1970).Search in Google Scholar
[21] W.Pachla, M.Kulczyk, A.Swiderska-Sroda, M.Lewandowska, H.Garbacz, A.Mazur, K.J.Kurzydłowski, in: N. Juster, A. Rosochowski (Eds.), Proc. 9th Int. Conf. on Metal Forming EMRS 2006, Publ. House Akapit (2006) 535.Search in Google Scholar
[22] T.Wejrzanowski: Micrometer software, WIM PW (1999).Search in Google Scholar
[23] T.Murai, S.Matsuoka, S.Miyamoto, Y.Oki: J. Mater. Process. Technol.141 (2003) 207. 10.1016/S0924-0136(02)01106-8Search in Google Scholar
[24] W.Pachla, L.Styczynski, S.Porowski, S.Wojciechowski: Metal Science16 (1982) 519. 10.1016/0036-9748(82)90262-9Search in Google Scholar
[25] I.Alexander, S.S.Pavlov, M.Kiritani: Mater. Sci. Eng. A350 (2003) 245. 10.1016/S0921-5093(02)00711-6Search in Google Scholar
[26] A.el-Domiaty, S.Z.Kassab: J. Mater. Process. Technol.83 (1998) 72. 10.1016/S0924-0136(98)00045-4Search in Google Scholar
[27] http://www.matweb.com.Search in Google Scholar
[28] K.Kubota, M.Mabuchi, K.Higashi: J. Mater. Sci.34 (1999) 2255. 10.1023/A:1004561205627Search in Google Scholar
[29] W.M.Gan, M.Y.Zheng, H.Chang, X.J.Wang, X.G.Qiao, K.Wu, B.Schwebke, H.-G.Brokmeier: J. Alloys Compd470 (2009) 256. 10.1016/j.jallcom.2008.02.030Search in Google Scholar
[30] V.N.Chuvil'deevT.G.Nieh, M.Yu.Gryazanov, V.I.Kopylov, A.N.Sysoev: J. Alloys Compd.378 (2004) 253. 10.1016/j.jallcom.2003.10.062Search in Google Scholar
[31] Y.Oishi, N.Kawabe, A.Hoshima, Y.Okazaki, A.Kishimoto: Sci. Technical Rev.56 (2003) 54.Search in Google Scholar
[32] Y.Oishi, N.Kawabe: Patent, United States Application US20040163744, http://www.freepatentsonline.com/20040163744.pdf.Search in Google Scholar
[33] F.Witte, H.-A.Crostack, J.Nellesen, F.Beckmann: Hasylab Annual Report (2001) part 1; http://hasyweb.desy.de/science/annual_reports/2001_report/part1/contrib/47/5461.pdf.Search in Google Scholar
[34] B.Denkena, F.Witte, C.Podolsky, A.Lucas: Proc. 5th Euspen Int. Conf., Montpellier, France, May 2005; http://www.mhh-hno.de/sfb599/download/download_r4/16_Euspen%20Proceedings%202005.pdf.Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Phase equilibria in the “SnO”–SiO2–“FeO” system in equilibrium with tin–iron alloy and the potential application for electronic scrap recycling
- A model to calculate the viscosity of silicate melts
- Surface structure of different interstitial austenitic steels after impact wear
- Microstructural study of boron-doped Co–Re–Cr alloys by means of transmission electron microscopy and electron energy-loss spectroscopy
- Orientation relationship between 14H-LPSO structured X phase and DO3-type (Mg,Zn)3RE phase in an Mg–Gd–Y–Zn–Zr alloy
- Microstructural, optical, and dielectric properties of nanocrystalline TiO2 films prepared via ion-assisted magnetron sputtering
- An investigation of the microstructure and properties of the explosively welded Gr5–SS304 clad plates for golf heads
- Cyclic fibre texture in hot extruded Ni50Mn29Ga21
- Development of high-strength pure magnesium and wrought magnesium alloys AZ31, AZ61, and AZ91 processed by hydrostatic extrusion with back pressure
- Effect of cerium and aluminium on the hot-deformation behaviour of magnesium
- Effect of alloying elements on stage-III work-hardening behaviour of Al–Zn–Mg(–Cu) alloys
- Effect of titanium on the as-cast microstructure and impact toughness of hypereutectic high-chromium cast iron
- Microstructure and mechanical properties of nanocrystalline WC-particle-reinforced Ti-based composites with nano/ultrafine-grained intermetallic matrix from spark plasma sintering and crystallization of amorphous phase
- Plasticity enhancement in centrally confined Zr-based bulk metallic glass
- In-situ observation of the fracture process in Al–Zn–Mg–Cu alloys
- Relationship between the mechanical properties and the surface roughness of marble
- Light, multi-layer, screening textiles with a high capacity for absorbing electromagnetic fields in the high frequency range
- Immobilization of zinc oxide nanoparticles on cotton fabrics using poly 4-styrenesulfonic acid polyelectrolyte
- People
- Prof. Dr. rer. nat. Ludwig Schultz
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Phase equilibria in the “SnO”–SiO2–“FeO” system in equilibrium with tin–iron alloy and the potential application for electronic scrap recycling
- A model to calculate the viscosity of silicate melts
- Surface structure of different interstitial austenitic steels after impact wear
- Microstructural study of boron-doped Co–Re–Cr alloys by means of transmission electron microscopy and electron energy-loss spectroscopy
- Orientation relationship between 14H-LPSO structured X phase and DO3-type (Mg,Zn)3RE phase in an Mg–Gd–Y–Zn–Zr alloy
- Microstructural, optical, and dielectric properties of nanocrystalline TiO2 films prepared via ion-assisted magnetron sputtering
- An investigation of the microstructure and properties of the explosively welded Gr5–SS304 clad plates for golf heads
- Cyclic fibre texture in hot extruded Ni50Mn29Ga21
- Development of high-strength pure magnesium and wrought magnesium alloys AZ31, AZ61, and AZ91 processed by hydrostatic extrusion with back pressure
- Effect of cerium and aluminium on the hot-deformation behaviour of magnesium
- Effect of alloying elements on stage-III work-hardening behaviour of Al–Zn–Mg(–Cu) alloys
- Effect of titanium on the as-cast microstructure and impact toughness of hypereutectic high-chromium cast iron
- Microstructure and mechanical properties of nanocrystalline WC-particle-reinforced Ti-based composites with nano/ultrafine-grained intermetallic matrix from spark plasma sintering and crystallization of amorphous phase
- Plasticity enhancement in centrally confined Zr-based bulk metallic glass
- In-situ observation of the fracture process in Al–Zn–Mg–Cu alloys
- Relationship between the mechanical properties and the surface roughness of marble
- Light, multi-layer, screening textiles with a high capacity for absorbing electromagnetic fields in the high frequency range
- Immobilization of zinc oxide nanoparticles on cotton fabrics using poly 4-styrenesulfonic acid polyelectrolyte
- People
- Prof. Dr. rer. nat. Ludwig Schultz
- DGM News
- DGM News