Home Technology Plasticity enhancement in centrally confined Zr-based bulk metallic glass
Article
Licensed
Unlicensed Requires Authentication

Plasticity enhancement in centrally confined Zr-based bulk metallic glass

  • Naeem ul Haq Tariq , Hasan Bin Awais , Javaid Iqbal Akhter , Muhammad Naeem and Atique Ahmad
Published/Copyright: June 11, 2013

Abstract

In the present work, a new idea is presented to enhance the plasticity of Zr65.5Cu22.4Al5.6Ni6.5 bulk metallic glass. A considerably large compressive plastic deformation (over 8%) was achieved by confining Zr65.5Cu22.4Al5.6Ni6.5 bulk metallic glass from its center. Numerical analysis was also carried out to investigate the stress distribution under the same mechanical conditions. It was revealed that loading induced high stress gradients facilitating large plastic strains through the generation of dense multiple shear bands.


* Correspondence address Naeem ul Haq Tariq Department of Metallurgy and Materials EngineeringPakistan Institute of Engineering and Applied SciencesP.O. Nilore, Islamabad, Pakistan Tel.: +92-51-2207381-82 Fax: +92-51-2208070 E-mail:

References

[1] S.Ranganathan: Current Science85 (2003) 1404.Search in Google Scholar

[2] M.Telford: Materials Today (2004) 36. 10.1016/S1369-7021(04)00124-5Search in Google Scholar

[3] W.H.Wang, C.Dong, C.H.Shek: Mater. Sci. Eng. R44 (2004) 45. 10.1016/j.mser.2004.03.001Search in Google Scholar

[4] C.J.Byrne, M.Eldrup: Science321 (2008) 502. PMid: 18653873; 10.1126/science.1158864Search in Google Scholar

[5] W.L.Johnson: MRS Bull.24 (1999) 42.10.1557/S0883769400053252Search in Google Scholar

[6] A.Inoue, A.Takeuchi: Mater. Sci. Eng. A375–377 (2004) 16.Search in Google Scholar

[7] A.Inoue: Acta Mater.48 (2000) 279. 10.1016/S1359-6454(99)00300-6Search in Google Scholar

[8] A.I.Saliman, M.F.Ashby, Y.Bréchet, A.L.Greer: Mater. Sci. Eng. A375–377 (2004) 385.Search in Google Scholar

[9] M.F.Ashby, A.L.Greer: Scripta Mater.54 (2006) 321. 10.1016/j.scriptamat.2005.09.051Search in Google Scholar

[10] J.Schroers, B.Lohwongwatana, W.L.Johnson, A.Peker: Mater. Sci. Eng. A449–451 (2007) 235.Search in Google Scholar

[11] Z.F.Zhang, J.Eckert, L.Schultz: Acta Mater.51 (2003) 1167. 10.1016/S1359-6454(02)00521-9Search in Google Scholar

[12] W.H.Wang: Adv. Mater.21 (2009) 4524. 10.1002/adma.200901053Search in Google Scholar

[13] T.C.Hufnagel, P.El-Deiry, R.P.Vinci: Scripta Mater.43 (2000) 1071. 10.1016/S1359-6462(00)00527-3Search in Google Scholar

[14] A.R.Yavari, J.J.Lewandowski, J.Eckert: MRS Bull.32 (2007) 635. 10.1557/mrs2007.125Search in Google Scholar

[15] J.C.Huang, J.P.Chu. J.S.C.Jang: Intermetallics17 (2009) 973. 10.1016/j.intermet.2009.05.004Search in Google Scholar

[16] J.F.Löffler: Intermetallics11 (2003) 529. 10.1016/S0966-9795(03)00046-3Search in Google Scholar

[17] X.Hui, S.N.Liu, S.J.Pang, L.C.Zhuo, T.Zhang, G.L.Chen, Z.K.Liu: Scripta Mater.63 (2010) 239. 10.1016/j.scriptamat.2010.03.065Search in Google Scholar

[18] N.H.Tariq, B.A.Hassan, J.I.Akhter, F.Ali: J. Alloys Compd.469 (2009) 179. 10.1016/j.jallcom.2008.02.002Search in Google Scholar

[19] S.H.Xie, X.R.Zeng, H.X.Qian: J. Alloys Compd.480 (2009) L37. 10.1016/j.jallcom.2009.02.075Search in Google Scholar

[20] D.H.Bae, S.W.Lee, J.W.Kwon, X.D.Wang, S.Yi: Mater. Sci. Eng. A449–451 (2007) 111.Search in Google Scholar

[21] J.Eckert, J.Das, K.B.Kim, F.Baier, M.B.Tang, W.H.Wang, Z.F.Zhang: Intermetallics14 (2006) 876. 10.1016/j.intermet.2006.01.003Search in Google Scholar

[22] J.Schoroers, W.L.Johnson: Phys. Rev. Lett.93 (2004) 255506. 10.1103/PhysRevLett.93.255506Search in Google Scholar PubMed

[23] Y.H.Li, W.Zhang, C.Dong, J.B.Qiang, K.Yubuta, A.Makino, A.Inoue: J. Alloys Compd.504 (2010) 52. 10.1016/j.jallcom.2010.02.049Search in Google Scholar

[24] C.Fan, C.Li, A.Inoue, V.Haas: Phys. Rev. B61 (2000) R3761. 10.1103/PhysRevB.61.R3761Search in Google Scholar

[25] C.C.Hays, C.P.Kim, W.L.Johnson: Phys. Rev. Lett.84 (2000) 2901. PMid: 11018971; 10.1103/PhysRevLett.84.2901Search in Google Scholar PubMed

[26] C.Fan, A.Inoue: Appl. Phys. Lett.77 (2000) 46. 10.1063/1.126872Search in Google Scholar

[27] S.F.Guo, L.Liu, N.Li, Y.Li: Scripta Mater.62 (2010) 329. 10.1016/j.scriptamat.2009.10.024Search in Google Scholar

[28] M.Heilmaier: J. Mater. Proces. Technol.117 (2001) 374. 10.1016/S0924-0136(01)00782-8Search in Google Scholar

[29] X.D.Hui, H.C.Kou, J.P.He, Y.L.Wang, W.Dong, G.L.Chen: Intermetallics10 (2002) 1065. 10.1016/S0966-9795(02)00145-0Search in Google Scholar

[30] F.Jiang, D.H.Zhang, L.C.Zhang, Z.B.Zhang, L.He, J.Sun, Z.F.Zhang: Mater. Sci. Eng. A467 (2007) 139. 10.1016/j.msea.2007.02.093Search in Google Scholar

[31] H.T.Zong, M.Z.Ma, L.Liu, X.Y.Zhang, B.W.Bai, P.F.Yu, L.Qi, P.Jing, G.Li, R.P.Liu: J. Alloys Compd.504 (2010) S106. 10.1016/j.jallcom.2010.02.045Search in Google Scholar

[32] U.Kuhn, J.Eckert, N.Mattern, L.Schultz: Appl. Phys. Lett.80 (2002) 2478. 10.1063/1.1467707Search in Google Scholar

[33] H.Choi-Yim, W.L.Johnson: Appl. Phys. Lett.71 (1997) 3808. 10.1063/1.120512Search in Google Scholar

[34] S.B.Biner: Acta Mater.54 (2006) 139. 10.1016/j.actamat.2005.08.043Search in Google Scholar

[35] M.H.Lee, J.Das, K.S.Lee, U.Kühn, J.Eckert: Intermetallics18 (2010) 1902. 10.1016/j.intermet.2010.02.031Search in Google Scholar

[36] M.H.Lee, K.S.Lee, J.Das, J.Thomas, W.Kühn, J.Eckert: Scripta Mater.62 (2010) 678. 10.1016/j.scriptamat.2010.01.024Search in Google Scholar

[37] Q.P.Cao, J.W.Liu, K.J.Yang, F.Xu, Z.Q.Yao, A.Minkow, H.J.Fecht, J.Ivanisenko, L.Y.Chen, X.D.Wang, S.X.Qu, J.Z.Jiang: Acta Mater.58 (2010) 1276. 10.1016/j.actamat.2009.10.032Search in Google Scholar

[38] J.W.Tian, L.L.Shaw, Y.D.Wang, Y.Yokoyama, P.K.Liaw: Intermetallics17 (2009) 951. 10.1016/j.intermet.2009.04.010Search in Google Scholar

[39] J.Das, M.B.Tang, K.B.Kim, R.Theissmann, F.Baier, W.H.Wang, J.Eckert: Phys. Rev. Lett.94 (2005) 205501. 10.1103/PhysRevLett.94.205501Search in Google Scholar

[40] Y.Yokoyama, J. Non-Cryst. Solids.316 (2003) 104. 10.1016/S0022-3093(02)01942-7Search in Google Scholar

[41] Y.Yokoyama, K.Yamano, K.Fukaura, H.Sunada, A.Inoue: Mater. Trans. JIM42 (2001) 623. 10.2320/matertrans.42.623Search in Google Scholar

[42] Y.Zhang, W.H.Wang, A.L.Greer: Nat. Mater.5 (2006) 857.PMid: 17041581; 10.1038/nmat1758Search in Google Scholar PubMed

[43] S.B.Qiu, K.F.Yao: Appl. Surf. Sci.255 (2008) 3454. 10.1016/j.apsusc.2008.07.077Search in Google Scholar

[44] Y.C.Choi, S.I.Hong: Scripta Mater.61 (2009) 481. 10.1016/j.scriptamat.2009.05.003Search in Google Scholar

[45] B.Chen, S.Pang, P.Han, Y.Li, A.R.Yavari, G.Vaughan, T.Zhang: J. Alloys Compd.504 (2010) S45. 10.1016/j.jallcom.2010.04.053Search in Google Scholar

[46] P.Yu, Y.H.Liu, G.Wang, H.Y.Bai, W.H.Wang: J. Mater. Res.22 (2007) 2384. 10.1557/jmr.2007.0318Search in Google Scholar

[47] Z.H.Han, L.He, M.B.Zhong, F.Jiang, J.Sun: J. Mater. Res.24 (2009) 3099. 10.1557/jmr.2009.0367Search in Google Scholar

[48] S.Scudino, K.B.Surreddi, G.Wang, J.Eckert: Scripta Mater. 62 (2010) 750. 10.1016/j.scriptamat.2010.01.046Search in Google Scholar

[49] L.Y.Chen, Q.Ge, S.X.Qu, Q.K.Jiang, X.B.Nie, J.Z.Jiang: Appl. Phys. Lett.211905 (2008) 92.Search in Google Scholar

[50] N.H.Tariq, J.I.Akhter, B.A.Hasan, M.Javed Hyder: J. Alloys Compd.507 (2010) 414. 10.1016/j.jallcom.2010.07.202Search in Google Scholar

[51] W.F.Wu, C.Y.Zhang, Y.W.Zhang, K.Y.Zeng, Y.Li: Intermetallics16 (2008) 1190. 10.1016/j.intermet.2008.07.004Search in Google Scholar

[52] K.F.Yao, C.Q.Zhang: Appl. Phys. Lett.061901 (2007) 90.Search in Google Scholar

Received: 2011-3-10
Accepted: 2011-12-21
Published Online: 2013-06-11
Published in Print: 2012-05-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Phase equilibria in the “SnO”–SiO2–“FeO” system in equilibrium with tin–iron alloy and the potential application for electronic scrap recycling
  5. A model to calculate the viscosity of silicate melts
  6. Surface structure of different interstitial austenitic steels after impact wear
  7. Microstructural study of boron-doped Co–Re–Cr alloys by means of transmission electron microscopy and electron energy-loss spectroscopy
  8. Orientation relationship between 14H-LPSO structured X phase and DO3-type (Mg,Zn)3RE phase in an Mg–Gd–Y–Zn–Zr alloy
  9. Microstructural, optical, and dielectric properties of nanocrystalline TiO2 films prepared via ion-assisted magnetron sputtering
  10. An investigation of the microstructure and properties of the explosively welded Gr5–SS304 clad plates for golf heads
  11. Cyclic fibre texture in hot extruded Ni50Mn29Ga21
  12. Development of high-strength pure magnesium and wrought magnesium alloys AZ31, AZ61, and AZ91 processed by hydrostatic extrusion with back pressure
  13. Effect of cerium and aluminium on the hot-deformation behaviour of magnesium
  14. Effect of alloying elements on stage-III work-hardening behaviour of Al–Zn–Mg(–Cu) alloys
  15. Effect of titanium on the as-cast microstructure and impact toughness of hypereutectic high-chromium cast iron
  16. Microstructure and mechanical properties of nanocrystalline WC-particle-reinforced Ti-based composites with nano/ultrafine-grained intermetallic matrix from spark plasma sintering and crystallization of amorphous phase
  17. Plasticity enhancement in centrally confined Zr-based bulk metallic glass
  18. In-situ observation of the fracture process in Al–Zn–Mg–Cu alloys
  19. Relationship between the mechanical properties and the surface roughness of marble
  20. Light, multi-layer, screening textiles with a high capacity for absorbing electromagnetic fields in the high frequency range
  21. Immobilization of zinc oxide nanoparticles on cotton fabrics using poly 4-styrenesulfonic acid polyelectrolyte
  22. People
  23. Prof. Dr. rer. nat. Ludwig Schultz
  24. DGM News
  25. DGM News
Downloaded on 17.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110732/html
Scroll to top button