Plasticity enhancement in centrally confined Zr-based bulk metallic glass
-
Naeem ul Haq Tariq
, Hasan Bin Awais , Javaid Iqbal Akhter , Muhammad Naeem and Atique Ahmad
Abstract
In the present work, a new idea is presented to enhance the plasticity of Zr65.5Cu22.4Al5.6Ni6.5 bulk metallic glass. A considerably large compressive plastic deformation (over 8%) was achieved by confining Zr65.5Cu22.4Al5.6Ni6.5 bulk metallic glass from its center. Numerical analysis was also carried out to investigate the stress distribution under the same mechanical conditions. It was revealed that loading induced high stress gradients facilitating large plastic strains through the generation of dense multiple shear bands.
References
[1] S.Ranganathan: Current Science85 (2003) 1404.Search in Google Scholar
[2] M.Telford: Materials Today (2004) 36. 10.1016/S1369-7021(04)00124-5Search in Google Scholar
[3] W.H.Wang, C.Dong, C.H.Shek: Mater. Sci. Eng. R44 (2004) 45. 10.1016/j.mser.2004.03.001Search in Google Scholar
[4] C.J.Byrne, M.Eldrup: Science321 (2008) 502. PMid: 18653873; 10.1126/science.1158864Search in Google Scholar
[5] W.L.Johnson: MRS Bull.24 (1999) 42.10.1557/S0883769400053252Search in Google Scholar
[6] A.Inoue, A.Takeuchi: Mater. Sci. Eng. A375–377 (2004) 16.Search in Google Scholar
[7] A.Inoue: Acta Mater.48 (2000) 279. 10.1016/S1359-6454(99)00300-6Search in Google Scholar
[8] A.I.Saliman, M.F.Ashby, Y.Bréchet, A.L.Greer: Mater. Sci. Eng. A375–377 (2004) 385.Search in Google Scholar
[9] M.F.Ashby, A.L.Greer: Scripta Mater.54 (2006) 321. 10.1016/j.scriptamat.2005.09.051Search in Google Scholar
[10] J.Schroers, B.Lohwongwatana, W.L.Johnson, A.Peker: Mater. Sci. Eng. A449–451 (2007) 235.Search in Google Scholar
[11] Z.F.Zhang, J.Eckert, L.Schultz: Acta Mater.51 (2003) 1167. 10.1016/S1359-6454(02)00521-9Search in Google Scholar
[12] W.H.Wang: Adv. Mater.21 (2009) 4524. 10.1002/adma.200901053Search in Google Scholar
[13] T.C.Hufnagel, P.El-Deiry, R.P.Vinci: Scripta Mater.43 (2000) 1071. 10.1016/S1359-6462(00)00527-3Search in Google Scholar
[14] A.R.Yavari, J.J.Lewandowski, J.Eckert: MRS Bull.32 (2007) 635. 10.1557/mrs2007.125Search in Google Scholar
[15] J.C.Huang, J.P.Chu. J.S.C.Jang: Intermetallics17 (2009) 973. 10.1016/j.intermet.2009.05.004Search in Google Scholar
[16] J.F.Löffler: Intermetallics11 (2003) 529. 10.1016/S0966-9795(03)00046-3Search in Google Scholar
[17] X.Hui, S.N.Liu, S.J.Pang, L.C.Zhuo, T.Zhang, G.L.Chen, Z.K.Liu: Scripta Mater.63 (2010) 239. 10.1016/j.scriptamat.2010.03.065Search in Google Scholar
[18] N.H.Tariq, B.A.Hassan, J.I.Akhter, F.Ali: J. Alloys Compd.469 (2009) 179. 10.1016/j.jallcom.2008.02.002Search in Google Scholar
[19] S.H.Xie, X.R.Zeng, H.X.Qian: J. Alloys Compd.480 (2009) L37. 10.1016/j.jallcom.2009.02.075Search in Google Scholar
[20] D.H.Bae, S.W.Lee, J.W.Kwon, X.D.Wang, S.Yi: Mater. Sci. Eng. A449–451 (2007) 111.Search in Google Scholar
[21] J.Eckert, J.Das, K.B.Kim, F.Baier, M.B.Tang, W.H.Wang, Z.F.Zhang: Intermetallics14 (2006) 876. 10.1016/j.intermet.2006.01.003Search in Google Scholar
[22] J.Schoroers, W.L.Johnson: Phys. Rev. Lett.93 (2004) 255506. 10.1103/PhysRevLett.93.255506Search in Google Scholar PubMed
[23] Y.H.Li, W.Zhang, C.Dong, J.B.Qiang, K.Yubuta, A.Makino, A.Inoue: J. Alloys Compd.504 (2010) 52. 10.1016/j.jallcom.2010.02.049Search in Google Scholar
[24] C.Fan, C.Li, A.Inoue, V.Haas: Phys. Rev. B61 (2000) R3761. 10.1103/PhysRevB.61.R3761Search in Google Scholar
[25] C.C.Hays, C.P.Kim, W.L.Johnson: Phys. Rev. Lett.84 (2000) 2901. PMid: 11018971; 10.1103/PhysRevLett.84.2901Search in Google Scholar PubMed
[26] C.Fan, A.Inoue: Appl. Phys. Lett.77 (2000) 46. 10.1063/1.126872Search in Google Scholar
[27] S.F.Guo, L.Liu, N.Li, Y.Li: Scripta Mater.62 (2010) 329. 10.1016/j.scriptamat.2009.10.024Search in Google Scholar
[28] M.Heilmaier: J. Mater. Proces. Technol.117 (2001) 374. 10.1016/S0924-0136(01)00782-8Search in Google Scholar
[29] X.D.Hui, H.C.Kou, J.P.He, Y.L.Wang, W.Dong, G.L.Chen: Intermetallics10 (2002) 1065. 10.1016/S0966-9795(02)00145-0Search in Google Scholar
[30] F.Jiang, D.H.Zhang, L.C.Zhang, Z.B.Zhang, L.He, J.Sun, Z.F.Zhang: Mater. Sci. Eng. A467 (2007) 139. 10.1016/j.msea.2007.02.093Search in Google Scholar
[31] H.T.Zong, M.Z.Ma, L.Liu, X.Y.Zhang, B.W.Bai, P.F.Yu, L.Qi, P.Jing, G.Li, R.P.Liu: J. Alloys Compd.504 (2010) S106. 10.1016/j.jallcom.2010.02.045Search in Google Scholar
[32] U.Kuhn, J.Eckert, N.Mattern, L.Schultz: Appl. Phys. Lett.80 (2002) 2478. 10.1063/1.1467707Search in Google Scholar
[33] H.Choi-Yim, W.L.Johnson: Appl. Phys. Lett.71 (1997) 3808. 10.1063/1.120512Search in Google Scholar
[34] S.B.Biner: Acta Mater.54 (2006) 139. 10.1016/j.actamat.2005.08.043Search in Google Scholar
[35] M.H.Lee, J.Das, K.S.Lee, U.Kühn, J.Eckert: Intermetallics18 (2010) 1902. 10.1016/j.intermet.2010.02.031Search in Google Scholar
[36] M.H.Lee, K.S.Lee, J.Das, J.Thomas, W.Kühn, J.Eckert: Scripta Mater.62 (2010) 678. 10.1016/j.scriptamat.2010.01.024Search in Google Scholar
[37] Q.P.Cao, J.W.Liu, K.J.Yang, F.Xu, Z.Q.Yao, A.Minkow, H.J.Fecht, J.Ivanisenko, L.Y.Chen, X.D.Wang, S.X.Qu, J.Z.Jiang: Acta Mater.58 (2010) 1276. 10.1016/j.actamat.2009.10.032Search in Google Scholar
[38] J.W.Tian, L.L.Shaw, Y.D.Wang, Y.Yokoyama, P.K.Liaw: Intermetallics17 (2009) 951. 10.1016/j.intermet.2009.04.010Search in Google Scholar
[39] J.Das, M.B.Tang, K.B.Kim, R.Theissmann, F.Baier, W.H.Wang, J.Eckert: Phys. Rev. Lett.94 (2005) 205501. 10.1103/PhysRevLett.94.205501Search in Google Scholar
[40] Y.Yokoyama, J. Non-Cryst. Solids.316 (2003) 104. 10.1016/S0022-3093(02)01942-7Search in Google Scholar
[41] Y.Yokoyama, K.Yamano, K.Fukaura, H.Sunada, A.Inoue: Mater. Trans. JIM42 (2001) 623. 10.2320/matertrans.42.623Search in Google Scholar
[42] Y.Zhang, W.H.Wang, A.L.Greer: Nat. Mater.5 (2006) 857.PMid: 17041581; 10.1038/nmat1758Search in Google Scholar PubMed
[43] S.B.Qiu, K.F.Yao: Appl. Surf. Sci.255 (2008) 3454. 10.1016/j.apsusc.2008.07.077Search in Google Scholar
[44] Y.C.Choi, S.I.Hong: Scripta Mater.61 (2009) 481. 10.1016/j.scriptamat.2009.05.003Search in Google Scholar
[45] B.Chen, S.Pang, P.Han, Y.Li, A.R.Yavari, G.Vaughan, T.Zhang: J. Alloys Compd.504 (2010) S45. 10.1016/j.jallcom.2010.04.053Search in Google Scholar
[46] P.Yu, Y.H.Liu, G.Wang, H.Y.Bai, W.H.Wang: J. Mater. Res.22 (2007) 2384. 10.1557/jmr.2007.0318Search in Google Scholar
[47] Z.H.Han, L.He, M.B.Zhong, F.Jiang, J.Sun: J. Mater. Res.24 (2009) 3099. 10.1557/jmr.2009.0367Search in Google Scholar
[48] S.Scudino, K.B.Surreddi, G.Wang, J.Eckert: Scripta Mater. 62 (2010) 750. 10.1016/j.scriptamat.2010.01.046Search in Google Scholar
[49] L.Y.Chen, Q.Ge, S.X.Qu, Q.K.Jiang, X.B.Nie, J.Z.Jiang: Appl. Phys. Lett.211905 (2008) 92.Search in Google Scholar
[50] N.H.Tariq, J.I.Akhter, B.A.Hasan, M.Javed Hyder: J. Alloys Compd.507 (2010) 414. 10.1016/j.jallcom.2010.07.202Search in Google Scholar
[51] W.F.Wu, C.Y.Zhang, Y.W.Zhang, K.Y.Zeng, Y.Li: Intermetallics16 (2008) 1190. 10.1016/j.intermet.2008.07.004Search in Google Scholar
[52] K.F.Yao, C.Q.Zhang: Appl. Phys. Lett.061901 (2007) 90.Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Phase equilibria in the “SnO”–SiO2–“FeO” system in equilibrium with tin–iron alloy and the potential application for electronic scrap recycling
- A model to calculate the viscosity of silicate melts
- Surface structure of different interstitial austenitic steels after impact wear
- Microstructural study of boron-doped Co–Re–Cr alloys by means of transmission electron microscopy and electron energy-loss spectroscopy
- Orientation relationship between 14H-LPSO structured X phase and DO3-type (Mg,Zn)3RE phase in an Mg–Gd–Y–Zn–Zr alloy
- Microstructural, optical, and dielectric properties of nanocrystalline TiO2 films prepared via ion-assisted magnetron sputtering
- An investigation of the microstructure and properties of the explosively welded Gr5–SS304 clad plates for golf heads
- Cyclic fibre texture in hot extruded Ni50Mn29Ga21
- Development of high-strength pure magnesium and wrought magnesium alloys AZ31, AZ61, and AZ91 processed by hydrostatic extrusion with back pressure
- Effect of cerium and aluminium on the hot-deformation behaviour of magnesium
- Effect of alloying elements on stage-III work-hardening behaviour of Al–Zn–Mg(–Cu) alloys
- Effect of titanium on the as-cast microstructure and impact toughness of hypereutectic high-chromium cast iron
- Microstructure and mechanical properties of nanocrystalline WC-particle-reinforced Ti-based composites with nano/ultrafine-grained intermetallic matrix from spark plasma sintering and crystallization of amorphous phase
- Plasticity enhancement in centrally confined Zr-based bulk metallic glass
- In-situ observation of the fracture process in Al–Zn–Mg–Cu alloys
- Relationship between the mechanical properties and the surface roughness of marble
- Light, multi-layer, screening textiles with a high capacity for absorbing electromagnetic fields in the high frequency range
- Immobilization of zinc oxide nanoparticles on cotton fabrics using poly 4-styrenesulfonic acid polyelectrolyte
- People
- Prof. Dr. rer. nat. Ludwig Schultz
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Phase equilibria in the “SnO”–SiO2–“FeO” system in equilibrium with tin–iron alloy and the potential application for electronic scrap recycling
- A model to calculate the viscosity of silicate melts
- Surface structure of different interstitial austenitic steels after impact wear
- Microstructural study of boron-doped Co–Re–Cr alloys by means of transmission electron microscopy and electron energy-loss spectroscopy
- Orientation relationship between 14H-LPSO structured X phase and DO3-type (Mg,Zn)3RE phase in an Mg–Gd–Y–Zn–Zr alloy
- Microstructural, optical, and dielectric properties of nanocrystalline TiO2 films prepared via ion-assisted magnetron sputtering
- An investigation of the microstructure and properties of the explosively welded Gr5–SS304 clad plates for golf heads
- Cyclic fibre texture in hot extruded Ni50Mn29Ga21
- Development of high-strength pure magnesium and wrought magnesium alloys AZ31, AZ61, and AZ91 processed by hydrostatic extrusion with back pressure
- Effect of cerium and aluminium on the hot-deformation behaviour of magnesium
- Effect of alloying elements on stage-III work-hardening behaviour of Al–Zn–Mg(–Cu) alloys
- Effect of titanium on the as-cast microstructure and impact toughness of hypereutectic high-chromium cast iron
- Microstructure and mechanical properties of nanocrystalline WC-particle-reinforced Ti-based composites with nano/ultrafine-grained intermetallic matrix from spark plasma sintering and crystallization of amorphous phase
- Plasticity enhancement in centrally confined Zr-based bulk metallic glass
- In-situ observation of the fracture process in Al–Zn–Mg–Cu alloys
- Relationship between the mechanical properties and the surface roughness of marble
- Light, multi-layer, screening textiles with a high capacity for absorbing electromagnetic fields in the high frequency range
- Immobilization of zinc oxide nanoparticles on cotton fabrics using poly 4-styrenesulfonic acid polyelectrolyte
- People
- Prof. Dr. rer. nat. Ludwig Schultz
- DGM News
- DGM News