Effect of cerium and aluminium on the hot-deformation behaviour of magnesium
-
Braj K. Prasad
, Sashi P. Narayan , Om P. Modi , Nrarayanrao Ramakrishnan , Arun M. Kumar and Anil K. Sachdev
Abstract
This study examines the response of pure Mg and its alloys, both binary Mg–Ce and ternary Mg–Al–Ce, during compression testing over a wide range of (true) strain rates and temperatures. Process maps were generated by plotting the instability parameter and efficiency of energy dissipation for microstructural evolution as a function of test temperature and strain rate. Microstructural features of each of the deformed samples were examined to generate a microstructure/micromechanism map as a matrix that was overlaid on the process map drawn in the temperature–strain-rate space. The combination of both maps delineated the desirable “safe” process window for each of the materials. Addition of 0.5% Ce to pure Mg reduced the extent of the “safe” process window despite increasing the flow stress, while alloying with both Ce and Al widened this window as determined by the extent of the desirable DRX domain. The process maps in general suggest a much wider range of temperature and strain rate for “safe” deformation compared to the microstructure maps.
References
[1] L.C.Tsao, C.F.Wu, T.H.Chuang: Z. Metallkd.92 (2001) 572.Search in Google Scholar
[2] H.Palaniswamy, G.Ngaile, T.Altan: J. Mater. Process. Technol.146 (2004) 52. 10.1016/S0924-0136(03)00844-6Search in Google Scholar
[3] J.Swiostek, J.Goken, D.Letzig, K.U.Kainer: J. Mater. Eng. Perf.15 (2006) 705. 10.1361/105994906X150722Search in Google Scholar
[4] Y.V.R.K.Prasad, K.P.Rao: Mater. Sci. Eng. A432 (2006) 170. 10.1016/j.msea.2006.05.159Search in Google Scholar
[5] S.B.Yi, H.G.Brokmeier, R.E.Bolmaro, K.U.Kainer, T.Lippmann: Script. Mater.51 (2004) 455. 10.1016/j.scriptamat.2003.12.034Search in Google Scholar
[6] Hot Working Guide, Y.V.R.K. Prasad, S. Sasidhara (Eds.), ASM (1997) 348.Search in Google Scholar
[7] M.T.P.Prado, O.A.Ruano: Script. Mater.46 (2002) 149. 10.1016/S1359-6462(01)01212-XSearch in Google Scholar
[8] F.E.Emley: Principles of Magnesium Technology, Pergamon Press, Oxford (1996).Search in Google Scholar
[9] E.Doege, K.Droder: J. Mater. Process. Technol.115 (2001) 14. 10.1016/S0924-0136(01)00760-9Search in Google Scholar
[10] E.Doege, L.E.Elend, F.Meiners: Proc. ISATA (2000) 87.Search in Google Scholar
[11] E.Doege, K.Droder: Mater. Technol.78 (1997) 19.Search in Google Scholar
[12] F.K.Chen, T.B.Huang: J. Mater. Process. Technol.142 (2003) 643. 10.1016/S0924-0136(03)00684-8Search in Google Scholar
[13] E.Doege, A.Kurz: CIRP Ann.50 (2001) 177. 10.1016/S0007-8506(07)62099-XSearch in Google Scholar
[14] T.L.Patton: Mach. Des., February (1954).Search in Google Scholar
[15] O.Sivakesavam, Y.V.R.K.Prasad: Z. Metallkd., 94 (2003) 1255.10.3139/146.031255Search in Google Scholar
[16] O.Sivakesavam, Y.V.R.K.Prasad: Z. Metallkd., 93 (2002) 913.10.3139/146.020913Search in Google Scholar
[17] A.G.Beer, M.R.Barnett: Mater. Sci. Eng. A423 (2006) 292. 10.1016/j.msea.2006.02.041Search in Google Scholar
[18] A.G.Beer, M.R.Barnett: Magnesium Technology –2002, TMS, Seattle, Washington, USA, (2002) 193.Search in Google Scholar
[19] Metals Handbook, Vol. 14, ASM, Materials Park, Ohio, USA (1998) 417.Search in Google Scholar
[20] H.J.McQueen, J.J.Jonas: Treatise on Materials Science Technology: Plastic Deformation of Materials, Vol. 6, Academic Press Inc., New York (1975) 394.Search in Google Scholar
[21] Hot working Guide, Y.K.R.K.Prasad, S.Sasidhara (Eds.): ASM, USA (1997) 1.Search in Google Scholar
[22] P.V.Sivaprasad, S.Venugopal: J. Mater. Eng. Pref.12 (2003) 656. 10.1361/105994903322692457Search in Google Scholar
[23] Y.N.Kwon, Y.S.Lee, J.H.Lee: J. Mater. Process. Technol.187–188 (2007) 533. 10.1016/j.jmatprotec.2006.11.207Search in Google Scholar
[24] B.L.Xiao, J.Z.Fan, X.F.Tian, W.Y.Zhang, L.K.Shi: J. Mater. Sci.40 (2005) 5757. 10.1007/s10853-005-1292-5Search in Google Scholar
[25] G.Ganesan, K.Raghukandan, R.Karthikeyan, B.C.Pai: J. Mater. Process. Technol.166 (2005) 423. 10.1016/j.jmatprotec.2004.08.027Search in Google Scholar
[26] S.Ramanathan, R.Karthikeyan, M.Gupta: J. Mater. Process. Technol.183 (2007) 104. 10.1016/j.jmatprotec.2006.09.033Search in Google Scholar
[27] S.Ramanathan, R.Karthikeyan, G.Ganesan: Mater. Sci. Eng. A441 (2006) 321. 10.1016/j.msea.2006.08.044Search in Google Scholar
[28] O.Sivakesavam, I.S.Rao, Y.V.R.K.Prasad: Mater. Sci. Technol.9 (1993) 805.Search in Google Scholar
[29] J.C.Malas, S.Venugopal, T.Seshacharyulu: Mater. Sci. Eng. A368 (2004) 41. 10.1016/j.msea.2003.09.078Search in Google Scholar
[30] N.Srinivasan, Y.V.R.K.Prasad, P.Rama Rao: Mater. Sci. Eng. A476 (2008) 146. 10.1016/j.msea.2007.04.103Search in Google Scholar
[31] Hot Working Guide, Y.V.R.K. Prasad, S. Sasidhara (Eds.), ASM (1997) 449.Search in Google Scholar
[32] Y.V.R.K.Prasad: J. Mater. Eng. Perf.12 (2003) 638. 10.1361/105994903322692420Search in Google Scholar
[33] M.R.Barnett, A.G.Beer, D.Atwell, A.Oudin: Script. Mater.51 (2004) 19. 10.1016/j.scriptamat.2004.03.023Search in Google Scholar
[34] M.R.Barnett, M.D.Nave, C.J.Bettles: Mater. Sci. Eng. A386 (2004) 205.Search in Google Scholar
[35] D.L.Yin, K.F.Zhang, G.F.Wang, H.B.Han: Mater. Sci. Eng. A392 (2005) 320. 10.1016/j.msea.2004.09.039Search in Google Scholar
[36] J.C.Tan, M.J.Tan: Mater. Sci. Eng. A339 (2003) 124. 10.1016/S0921-5093(02)00096-5Search in Google Scholar
[37] S.E.Ion, F.J.Humphreys, S.H.White: Acta Metall.30 (1982) 1909. 10.1016/0001-6160(82)90031-1Search in Google Scholar
[38] Z.Trozanova, P.Lukac: J. Mater. Process. Technol.162–163 (2005) 416. 10.1016/j.jmatprotec.2005.02.024Search in Google Scholar
[39] T.Mukai, M.Yamanoi, H.Watanabe, K.Higashi: Script. Mater.45 (2001) 89. 10.1016/S1359-6462(01)00996-4Search in Google Scholar
[40] J.A.del Valle, O.A.Ruano: Script. Mater.55 (2006) 775. 10.1016/j.scriptamat.2006.07.013Search in Google Scholar
[41] M.Jayamathy, S.V.Kailas, K.Kumar, S.Seshan, T.S.Srivatsan: Mater. Sci. Eng. A393 (2005) 27. 10.1016/j.msea.2004.09.070Search in Google Scholar
[42] Q.Guo, H.G.Yan, Z.H.Chen, H.Zhang: Mater. Sci. Technol.22 (2006) 725. 10.1179/174328406X100680Search in Google Scholar
[43] R.K.Mishra, A.K.Gupta, P.Ramarao, A.K.Sachdev, A.M.Kumar, A.A.Luo: Script. Mater.59 (2008) 562. 10.1016/j.scriptamat.2008.05.019Search in Google Scholar
[44] J.C.McDonald: Trans. AIME143 (1941) 179.Search in Google Scholar
[45] A.Akhtar, E.Teghtsoonian: Acta Metall.17 (1969) 1339. 10.1016/0001-6160(69)90151-5Search in Google Scholar
[46] Y.Chino, M.Kado, M.Mabuchi: Acta Mater.56 (2008) 387. 10.1016/j.actamat.2007.09.036Search in Google Scholar
[47] Y.Zhang, X.Zeng, C.Lu, W.Ding: Mater. Sci. Eng. A428 (2006) 91. 10.1016/j.msea.2006.04.103Search in Google Scholar
[48] Metals Handbook, Vol. 20, Ed. 1, ASM, Materials Park, Ohio, USA (1997) 730.Search in Google Scholar
[49] Y.V.R.K.Prasad, H.L.Gegel, S.M.Doraivelu, J.C.Malas, J.T.Morgan, K.A.Lark, D.A.Barker: Metall. Trans. A15 (1984) 1883. 10.1007/BF02664902Search in Google Scholar
[50] D.Wesis, A.A.Kaya, E.Aghion, D.Eliezer: J. Mater. Sci.37 (2002) 5371. 10.1023/A:1021001813867Search in Google Scholar
[51] A.A.Nayeb, J.B.Clarck: Phase Diagram of Binary Magnesium Alloys (1988) 78.Search in Google Scholar
[52] N.Zaludava: Mg-RE Alloys and Their Applications, WDS 05, Proceedings, Part III (2005) 643.Search in Google Scholar
[53] I.J.Polmear: Light Alloys: Metallurgy of the Light Metals, Edward Arnold Ltd., London, Ed.1 (1981) 127.10.1016/B978-075066371-7/50005-0Search in Google Scholar
[54] S.Kleiner, O.Beffort, A.Wahlen, P.J.Uggowitzer: J. Light Met.2 (2002) 277. 10.1016/S1471-5317(03)00012-9Search in Google Scholar
[55] J.U.Dong-Ying, HillXiaodong: Trans. Nonferrous Met. Soc. China16 (2006) 874.Search in Google Scholar
[56] Magnesium and Magnesium Alloys: ASM specialty Handbook, American Society of Materials, Materials Park, Ohio, USA (1999) p. 26.Search in Google Scholar
[57] Y.Fan, G.Wu, C.Zhai: Mater. Sci. Eng. A433 (2006) 208. 10.1016/j.msea.2006.06.109Search in Google Scholar
[58] W.Quolong, L.Yizheng, Z.Xiaoging, D.Wanjiang: Trans. Non-ferrous Met. Soc. China10 (2000) 235.Search in Google Scholar
[59] S.S.Vagarali, T.G.Langdon: Acta Metall.29 (1981) 1969. 10.1016/0001-6160(81)90034-1Search in Google Scholar
[60] P.Klimanek, A.Potzsch: Mater. Sci. Eng. A324 (2002) 145. 10.1016/S0921-5093(01)01297-7Search in Google Scholar
[61] P.W.Flynn, J.Mote, J.E.Dorn: Trans. Met. Soc. AIME221 (1961) 1148.Search in Google Scholar
[62] T.Obara, H.Yoshinga, S.Morozumi: Acta Metall.21 (1973) 845. 10.1016/0001-6160(73)90141-7Search in Google Scholar
[63] K.Ishikawa, H.Watanabe, T.Mukai: J. Mater. Sci.40 (2005) 1577. 10.1007/s10853-005-0656-1Search in Google Scholar
[64] K.Ishikawa, H.Watanable, T.Mukai: Mater. Lett.59 (2005) 1511. 10.1016/j.matlet.2005.01.012Search in Google Scholar
[65] L.Helis, K.Okayasu, H.Fukutomi: Mater. Sci. Eng. A430 (2006) 98. 10.1016/j.msea.2006.04.125Search in Google Scholar
[66] A.Mwembela, E.B.Konopleva, H.J.McQueen: Script. Mater.37 (1997) 1789. 10.1016/S1359-6462(97)00344-8Search in Google Scholar
[67] Y.Wang, Y.Zhang, X.Zeng, W.Ding: J. Mater. Sci.41 (2006) 3603. 10.1007/s10853-005-5564-xSearch in Google Scholar
[68] A.M.Elwazri, P.Wanjara, S.Yue: Mater. Sci. Eng. A339 (2003) 209. 10.1016/S0921-5093(02)00164-8Search in Google Scholar
[69] F.J.Humphrey, M.Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, U.K. (1995).Search in Google Scholar
[70] R.O.Kaibyshav, B.K.Solokov: Phys. Met. Metall.74 (1992) 72.Search in Google Scholar
[71] H.Miura, H.Aoyama, T.Sakai: J. Jpn. Inst. Met.58 (1994) 267.Search in Google Scholar
[72] A.M.Wusatowska-Sarnek, H.Miura, T.Sakai: Mater. Sci. Eng. A323 (2002) 177. 10.1016/S0921-5093(01)01336-3Search in Google Scholar
[73] H.J.McQueen, N.D.Ryan, E.V.Konopleva, X.Xia: Can. Met. Qtly.34 (1995) 219. 10.1016/0008-4433(95)00001-ESearch in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Phase equilibria in the “SnO”–SiO2–“FeO” system in equilibrium with tin–iron alloy and the potential application for electronic scrap recycling
- A model to calculate the viscosity of silicate melts
- Surface structure of different interstitial austenitic steels after impact wear
- Microstructural study of boron-doped Co–Re–Cr alloys by means of transmission electron microscopy and electron energy-loss spectroscopy
- Orientation relationship between 14H-LPSO structured X phase and DO3-type (Mg,Zn)3RE phase in an Mg–Gd–Y–Zn–Zr alloy
- Microstructural, optical, and dielectric properties of nanocrystalline TiO2 films prepared via ion-assisted magnetron sputtering
- An investigation of the microstructure and properties of the explosively welded Gr5–SS304 clad plates for golf heads
- Cyclic fibre texture in hot extruded Ni50Mn29Ga21
- Development of high-strength pure magnesium and wrought magnesium alloys AZ31, AZ61, and AZ91 processed by hydrostatic extrusion with back pressure
- Effect of cerium and aluminium on the hot-deformation behaviour of magnesium
- Effect of alloying elements on stage-III work-hardening behaviour of Al–Zn–Mg(–Cu) alloys
- Effect of titanium on the as-cast microstructure and impact toughness of hypereutectic high-chromium cast iron
- Microstructure and mechanical properties of nanocrystalline WC-particle-reinforced Ti-based composites with nano/ultrafine-grained intermetallic matrix from spark plasma sintering and crystallization of amorphous phase
- Plasticity enhancement in centrally confined Zr-based bulk metallic glass
- In-situ observation of the fracture process in Al–Zn–Mg–Cu alloys
- Relationship between the mechanical properties and the surface roughness of marble
- Light, multi-layer, screening textiles with a high capacity for absorbing electromagnetic fields in the high frequency range
- Immobilization of zinc oxide nanoparticles on cotton fabrics using poly 4-styrenesulfonic acid polyelectrolyte
- People
- Prof. Dr. rer. nat. Ludwig Schultz
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Phase equilibria in the “SnO”–SiO2–“FeO” system in equilibrium with tin–iron alloy and the potential application for electronic scrap recycling
- A model to calculate the viscosity of silicate melts
- Surface structure of different interstitial austenitic steels after impact wear
- Microstructural study of boron-doped Co–Re–Cr alloys by means of transmission electron microscopy and electron energy-loss spectroscopy
- Orientation relationship between 14H-LPSO structured X phase and DO3-type (Mg,Zn)3RE phase in an Mg–Gd–Y–Zn–Zr alloy
- Microstructural, optical, and dielectric properties of nanocrystalline TiO2 films prepared via ion-assisted magnetron sputtering
- An investigation of the microstructure and properties of the explosively welded Gr5–SS304 clad plates for golf heads
- Cyclic fibre texture in hot extruded Ni50Mn29Ga21
- Development of high-strength pure magnesium and wrought magnesium alloys AZ31, AZ61, and AZ91 processed by hydrostatic extrusion with back pressure
- Effect of cerium and aluminium on the hot-deformation behaviour of magnesium
- Effect of alloying elements on stage-III work-hardening behaviour of Al–Zn–Mg(–Cu) alloys
- Effect of titanium on the as-cast microstructure and impact toughness of hypereutectic high-chromium cast iron
- Microstructure and mechanical properties of nanocrystalline WC-particle-reinforced Ti-based composites with nano/ultrafine-grained intermetallic matrix from spark plasma sintering and crystallization of amorphous phase
- Plasticity enhancement in centrally confined Zr-based bulk metallic glass
- In-situ observation of the fracture process in Al–Zn–Mg–Cu alloys
- Relationship between the mechanical properties and the surface roughness of marble
- Light, multi-layer, screening textiles with a high capacity for absorbing electromagnetic fields in the high frequency range
- Immobilization of zinc oxide nanoparticles on cotton fabrics using poly 4-styrenesulfonic acid polyelectrolyte
- People
- Prof. Dr. rer. nat. Ludwig Schultz
- DGM News
- DGM News