Startseite Enhanced photocatalytic activity of beryllium doped titania in visible light on the degradation of methyl orange dye
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enhanced photocatalytic activity of beryllium doped titania in visible light on the degradation of methyl orange dye

  • Balaram Kiran Avasarala , Siva Rao Tirukkovalluri und Sreedhar Bojja
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The present work is focused on the synthesis of beryllium doped titania (Be+2–TiO2) at different percentages (0.25, 0.5, 0.75 and 1.0 wt.%) by the sol-gel method and its characterization using X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform-Infra red and Ultra violet-visible absorption spectroscopic methods. Diffraction peaks of anatase crystalline phase were present in both synthesized TiO2 and Be+2–TiO2. The presence of Be+2 ion in the TiO2 structure caused a significant absorption shift towards the visible region and its presence was confirmed by X-ray photoelectron spectroscopy and Fourier Transform-Infra Red data. The photocatalytic efficiency of the synthesized Be+2–TiO2 and pure TiO2 was evaluated by the degradation of aqueous methyl orange dye under visible light irradiation, where the degradation rate of methyl orange by Be+2–TiO2 was found to be higher than by pure TiO2. This can be attributed to more efficient electron–hole creation in Be+2–TiO2 in visible light and the electrons produced due to photosensitization of the dye can be scavenged by photoexcited doped TiO2 in visible light.


* Correspondence address, T. Siva Rao, Department of Inorganic and Analytical Chemistry, School of Chemistry, Andhra University, Visakhapatnam, India-530003, Asia. Tel.: +91 891 284 4667, Mobile: +91 77 0211 0459. E-mail:

References

[1] U.Pagga, D.Brown: Chemosphere15 (1986) 479.10.1016/0045-6535(86)90542-4Suche in Google Scholar

[2] D.Chen, A.K.Ray: Appl. Catal. B: Environ.23 (1999) 143.10.1016/j.jhazmat.2007.03.035Suche in Google Scholar PubMed

[3] P.Robertson: J. Cleaner Prod.4(3–4) (1996) 203.10.1016/j.desal.2007.12.013Suche in Google Scholar

[4] O.Legrini, E.Oliveros, A.M.Braun: Chem. Rev.93 (2) (1993) 671.10.1021/cr00018a003Suche in Google Scholar

[5] D.Blake: Bibliography of work on the heterogeneous photo catalytic removal hazardous compounds from water and air. NREL/TP-510-31319.NTIS, U.S. Dept. of Commerce, Springfield, (2001) VA 22161.Suche in Google Scholar

[6] A.Fujishima, K.Honda: Nature (London)238 (1972) 37.10.1038/238037a0Suche in Google Scholar PubMed

[7] M.R.Hoffmann, S.T.Martin, W.Choi, D.W.Bahnemann: Chem. Rev.95 (1995) 69.10.1021/cr00033a004Suche in Google Scholar

[8] J.K.Burdett, T.Hughbands, J.M.Gordon, J.W.Richardson, J.V.J.Smith: J. Amer. Chem. Soc.109 (1987) 3639.10.1021/ja00246a021Suche in Google Scholar

[9] A.Mills, R.H.Davies, D.Worsley: Chem. Soc. Rev.22 (1993) 417.10.1039/CS9932200417Suche in Google Scholar

[10] H.Noda, K.Oikawa, H.Kamada: Bull. Chem. Soc. Jpn.66 (1993) 455.10.1246/bcsj.66.455Suche in Google Scholar

[11] X.Domenech, in: D.F.Ollis, H.Al-Ekabi (Eds.) Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam (1993) 337.Suche in Google Scholar

[12] M.Rao, K.Rajeshwar, V.R.Vernerker, J.Dubow: J. Phys. Chem.84 (1980) 1987.10.1021/j100452a023Suche in Google Scholar

[13] S.Nishimoto, B.Ohtani, H.Kajiwara, T.Kagiya: J. Chem. Soc., Faraday Trans.81 (1985) 61.10.1039/F19858100061Suche in Google Scholar

[14] K.Tanaka, T.Hisanaga, A.P.Rivera in: D.F.Ollis, H.Al-Ekabi (Eds.), Photocatalytic Purification and Treatment of Water and Air.Elsevier, Amsterdam (1993) 337.Suche in Google Scholar

[15] X.Z.Li, F.B.Li, C.L.Yang, W.K.Ge: J. Photochem. Photobiol. A: Chem.141 (2001) 209.10.1016/S1010-6030(01)00446-4Suche in Google Scholar

[16] E.Vrachnou, M.Graetzel, A.J.McEvoy: J. Electroanaly. Chem.258 (1) (1989) 193.10.1016/0022-0728(89)85172-1Suche in Google Scholar

[17] J.Moser, M.Graetzel: J. Am. Chem. Soc.106 (1984) 6557.10.1021/ja00334a017Suche in Google Scholar

[18] J.A.Navio, M.G.Gomez, M.A.P.Adrian, J.F.Mota: Studies in Surf. Sci. Cat.59 (1991) 445.Suche in Google Scholar

[19] W.Choi, A.Termin, M.R.Hoffmann: J. Phys. Chem.98 (1994) 13669.10.1021/j100102a038Suche in Google Scholar

[20] Y.Bessekhouad, D.Robert, J.Weber, N.Chaoui: J. Photochem. Photobiol. A: Chem.167 (2004) 49.10.1016/j.jphotochem.2003.12.001Suche in Google Scholar

[21] J.Xu, Y.Shi, J.Huang, B.Wang, H.Li: J. Mol. Catal. A: Chem.219 (2004) 351.10.1016/j.molcata.2004.05.018Suche in Google Scholar

[22] Z.Zhang, C.Wang, R.Zakaria, J.Y.Ying: J. Phys. Chem. B102 (1998) 10871.10.1021/jp982948+Suche in Google Scholar

[23] S.Sakthivel, M.V.Shankar, M.Palanichamy, B.Arabindoo, D.W.Bahnemann, V.Murugesan: Water Res.38 (2004) 3001.10.1016/j.watres.2004.04.046Suche in Google Scholar

[24] T.Lopez, R.Hernandez-Ventura, R.Gomez, F.Tzompantzi, E.Sanchez, X.Bokhimi, A.Garcia: J. Mol. Catal. A: Chem.167 (2001) 101.10.1016/S1381-1169(00)00496-9Suche in Google Scholar

[25] Y.Liu, C.Liu, Q.Rong, Z.Zhang: Appl. Surf. Sci.220 (2003) 7.10.1016/S0169-4332(03)00836-5Suche in Google Scholar

[26] K.T.Ranjit, B.Viswanathan: J. Photochem. Photobiol. A: Chem.108 (1997) 79.10.1016/S1010-6030(97)00005-1Suche in Google Scholar

[27] D.H.Kim, H.S.Hong, S.J.Kim, J.S.Song, K.S.Lee: J. Alloys and Compounds375 (2004) 259.10.1016/j.jallcom.2003.11.044Suche in Google Scholar

[28] S.S.Kistler: Nature127 (1931) 741.10.1038/127741a0Suche in Google Scholar

[29] S.T.Martin, C.L.Morrison, M.R.Hoffmann: J. Phys. Chem.98 (1994) 13695.10.1021/j100102a041Suche in Google Scholar

[30] J.C.Wu, C.Chen: J. Photochem. Photobiol. A: Chem.163 (2004) 509.10.1016/j.jphotochem.2004.02.007Suche in Google Scholar

[31] S.J.Tsai, S.Cheng: Catal. Today33 (1997) 227.10.1016/S0920-5861(96)00152-6Suche in Google Scholar

[32] M.A.Fox, M.T.Dulay: Chem. Rev.93 (1993) 341.10.1021/cr00017a016Suche in Google Scholar

[33] H.Zhang, M.Finnegan, J.F.Banfield: Nano Lett.1 (2001) 81.10.1021/nl0055198Suche in Google Scholar

[34] A.L.Linsebigler, G.Q.Lu, J.T.Yates: Chem. Rev.95 (1995) 735.10.1021/cr00035a013Suche in Google Scholar

[35] R.Sanjines, H.Tang, H.Berger, F.Gozzo, G.Margaritondo, F.Levy: J. Appl. Phys.75 (1994) 2945.10.1063/1.356190Suche in Google Scholar

[36] X-P.Wang, Y.Yu, X-F.Hu, L.Gao: Thin Solid Films371 (2000) 148.10.1016/S0040-6090(00)00995-0Suche in Google Scholar

[37] R.D.Shannon: Acta Cryst. A32 (1976) 751.10.1107/S0567739476001551Suche in Google Scholar

[38] R.S.Sonewane, B.B.Kale, M.K.Dongare: Mat. Chem. Phy.85 (2004) 52.10.1016/j.matchemphys.2003.12.007Suche in Google Scholar

[39] J.Augustinski: Struct. Bonding, 69 (1988) 1.10.1007/3-540-18790-1_1Suche in Google Scholar

[40] B.Neppolian, C.H.Choi, S.Sakthivel, B.Arabindoo, V.Murugesan: J. Hazar. Mater. B89 (2002) 303317.10.1016/S0304-3894(01)00329-6Suche in Google Scholar

[41] M.N.Rashed, A.A.El-Amin: Int. J. Phys. Sci.2 (2007) 073.Suche in Google Scholar

Received: 2009-11-21
Accepted: 2010-10-4
Published Online: 2013-06-11
Published in Print: 2010-12-01

© 2010, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Basic
  2. High-temperature in-situ microscopy during stress-induced phase transformations in Co49Ni21Ga30 shape memory alloy single crystals
  3. Contents
  4. contents
  5. Editorial
  6. Editorial December 2010
  7. Basic
  8. Atomic mobilities and diffusivities in the fcc, L12 and B2 phases of the Ni-Al system
  9. Experimental investigation of the Zn–Fe–V system at 450°C
  10. Time resolved X-ray imaging of eutectic cellular patterns evolving during solidification of ternary Al–Cu–Ag alloys
  11. Reassessment of the Mg–Ge binary system using CALPHAD supported by first-principles calculation
  12. A quantitative modeling of the unloading behavior of metals during a tensile test
  13. A technique for diameter enlargement in SiC crystal growth
  14. Applied
  15. Thermal and chemical stability of Cr2AlC in contact with α-Al2O3 and NiAl
  16. Microstructure and mechanical properties of Zn25Al3Cu based composites with large Al2O3 particles at room and elevated temperatures
  17. An investigation on Incoloy800-SS304 clad plate by explosive welding
  18. Effect of grain boundary precipitates on vibration damping of FeüCrüMgüAl/Si alloy
  19. Adsorption of metal ions on magnetic carbon nanomaterials bearing chitosan-functionalized silica
  20. Tensile and in-vitro degradation study of electro spun fibrous mat produced from eri silk fibroin
  21. Study of the influence of UV-irradiation on the photodegradation of plasticized poly(para-tert-butylstyrene) films
  22. Enhanced photocatalytic activity of beryllium doped titania in visible light on the degradation of methyl orange dye
  23. Progress in chemistry modelling for vapour and aerosol transport analyses
  24. DGM News
  25. Personal
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110438/pdf?lang=de
Button zum nach oben scrollen