Home Reassessment of the Mg–Ge binary system using CALPHAD supported by first-principles calculation
Article
Licensed
Unlicensed Requires Authentication

Reassessment of the Mg–Ge binary system using CALPHAD supported by first-principles calculation

  • Huanli Yan , Yong Du , Liangcai Zhou , Honghui Xu , Lijun Zhang and Shuhong Liu
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

The Mg–Ge system is reassessed by means of the CALPHAD approach, supplemented with first-principles calculation. All of the experimental phase diagram and thermodynamic data available in the literature are critically reviewed and assessed by using thermodynamic models for the Gibbs energies of individual phases. Two models, the substitutional solution model and associate solution model, are employed to describe the Gibbs energy of the liquid phase. The enthalpy of formation for Mg2Ge is calculated by first-principles calculation with a desire to clarify the discrepancies in the literature data reported for the enthalpies of formation. Two sets of self-consistent thermodynamic parameters for the Mg–Ge system are finally obtained, with a substitutional solution model or associate solution model for the liquid phase. Some improvements have been made, compared with the previous assessments.


* Correspondence address, Professor Dr. Yong Du, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, P. R. China. Tel.: +86 0731 8883 6213, Fax: +86 0731 8871 0855. E-mail:

References

[1] W.Klemm, H.Westlinning: Z. Anorg. Allgem. Chem.245 (1941) 365.10.1002/zaac.19412450404Search in Google Scholar

[2] R.Geffken, E.Miller: Trans. Metall. Soc. AIME242 (1968) 2323.Search in Google Scholar

[3] Y.K.Rao, G.R.Belton: Metall. Trans.12 (1971) 2215.Search in Google Scholar

[4] J.M.Eldridge, E.Miller, K.L.Komarek: Trans. Metall. Soc. AIME236 (1966) 1094.Search in Google Scholar

[5] J.F.Smith: Iowa State University, Ames, Iowa. Quoted in Ref. 4.Search in Google Scholar

[6] P.Beardmore, B.W.Howlett, B.D.Lichter, M.B.Bever: Trans. Am. Inst. Min. Eng.236 (1966) 102.Search in Google Scholar

[7] B.C.Gerstein, P.L.Chung, G.C.Danielson: Phys. Chem. Solids27 (1966) 1161.Search in Google Scholar

[8] R.Ferro, R.Capelli, A.Borsese, S.Delfino: J. Less-Comm. Met.37 (1974) 307.Search in Google Scholar

[9] F.Islam, A.K.Thykadavil, M.Medraj: J. Alloys Compd.425 (2006) 129.Search in Google Scholar

[10] D.Nassyrov, In-HoJung: CALPHAD33 (2009) 521.10.1016/j.calphad.2009.01.005Search in Google Scholar

[11] F.Sommer: Z. Metallkd.2 (1982) 72.10.1515/ijmr-1982-730202Search in Google Scholar

[12] R.Schmid, Y.A.Chang: CALPHAD9 (1985) 363.10.1016/0364-5916(85)90004-5Search in Google Scholar

[13] D.A.Goodman, J.W.Cahn, L.H.Bennett: Bull. Alloy Phase Diag.2 (1981) 29.10.1007/BF02873696Search in Google Scholar

[14] G.V.Raynor: J. Inst. Met.66 (1940) 403.Search in Google Scholar

[15] V.N.Eremenko, G.M.Lukashenko: Izv. Akad. Nauk SSSR, Neorg. Mater.1 (1965) 1296.Search in Google Scholar

[16] R.Blachnik, D.Kunze, A.Schneider: Metall.25 (1971) 119.Search in Google Scholar

[17] W.Kohn, L.Sham: Phys. Rev. A140 (1965) 1133.10.1103/PhysRev.140.A1133Search in Google Scholar

[18] J.P.Perdew, J.A.Chevary, S.H.Vosko, K.A.Jackson, M.R.Pederson, D.J.Singh, C.Fiolhais: Phys. Rev. B46 (1992) 6671.10.1103/PhysRevB.46.6671Search in Google Scholar

[19] P.E.Blöchl: Phys. Rev. B50 (1994) 17953.10.1103/PhysRevB.50.17953Search in Google Scholar

[20] G.Kresse, J.Furthmüller: Phys. Rev. B – Condens. Matter Mater. Phys.54 (1996) 11169.Search in Google Scholar

[21] G.Kresse, J.Furthmüller: Comput. Mater. Sci.6 (1996) 15.Search in Google Scholar

[22] J.P.Perdew, K.Burke, M.Ernzerhof: Phys. Rev. Lett.77 (1996) 3865.10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

[23] H.J.Monkhorst, J.D.Pack: Phys. Rev. B13 (1976) 5188.10.1103/PhysRevB.13.5188Search in Google Scholar

[24] M.Methfessel, A.T.Paxton: Phys. Rev. B40 (1989) 3616.10.1103/PhysRevB.40.3616Search in Google Scholar

[25] P.E.BlöchlO.Jepsen, O.K.Andersen: Phys. Rev. B49 (1994) 16223.10.1103/PhysRevB.49.16223Search in Google Scholar

[26] A.T.Dinsdale: CALPHAD15 (1991) 317.10.1016/0364-5916(91)90030-NSearch in Google Scholar

[27] P.Villars, L.D.Calvert: Pearson's handbook of crystallographic data for intermetallic phases, American Society for Metals (1985).Search in Google Scholar

[28] H.Zhang, S.L.Shang, J.E.Saal, A.Saengdeejing, Y.Wang, L.Q.Chen, Z.K.Liu: Intermetallics17 (2009) 878.10.1016/j.intermet.2009.03.017Search in Google Scholar

[29] O.Kubaschewski, H.Villa: Z. Electrochem.53 (1949) 32.Search in Google Scholar

[30] K.Grjotheim, O.Herstad, S.Petrucci, R.Skarbo, J.Toguri: Rev. Roum. Chim.7 (1962) 217.Search in Google Scholar

[31] I.V.Ryabchikov, A.S.Mikulinski: Izvest. Fiz. Uchebn. Zaved. Tsvet. Met.6 (1963) 95.Search in Google Scholar

[32] G.M.Lukashenko, V.N.Eremenko: Russ. J. Inorg. Chem.9 (1964) 1243.Search in Google Scholar

[33] H.J.Caulfield, D.E.Hudson: Solid State Commun.4 (1966) 299.10.1016/0038-1098(66)90457-1Search in Google Scholar

[34] B.C.Gerstein, F.J.Jelinek, M.Habenschuss, W.D.Shickell, J.R.Mullaly, P.L.Chung: J. Chem. Phys.47 (1967) 2109.10.1063/1.1712243Search in Google Scholar

[35] Y.K.Rao, G.R.Belton, in: N.A.Gokcen (Ed.), Chemical Metallurgy A Tribute to Carl Wagner, The Metallurgical Society of AIME (1981) 75.Search in Google Scholar

[36] H.Feufel, T.Godecke, H.L.Lukas, F.Sommer: J. Alloys Comp.247 (1997) 31.10.1016/S0925-8388(96)02655-2Search in Google Scholar

[37] X.M.Yuan, W.H.Sun, Y.Du, D.D.Zhao, H.M.Yang: CALPHAD33 (2009) 673.10.1016/j.calphad.2009.08.004Search in Google Scholar

[38] B.Sundman, B.Jansson, J.O.Andersson: CALPHAD9 (1985) 153.10.1016/0364-5916(85)90021-5Search in Google Scholar

[39] Y.Du, R.Schmid-Fetzer, H.Ohtani: Z. Metallkd.88 (1997) 545.Search in Google Scholar

Received: 2009-10-28
Accepted: 2010-10-4
Published Online: 2013-06-11
Published in Print: 2010-12-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Basic
  2. High-temperature in-situ microscopy during stress-induced phase transformations in Co49Ni21Ga30 shape memory alloy single crystals
  3. Contents
  4. contents
  5. Editorial
  6. Editorial December 2010
  7. Basic
  8. Atomic mobilities and diffusivities in the fcc, L12 and B2 phases of the Ni-Al system
  9. Experimental investigation of the Zn–Fe–V system at 450°C
  10. Time resolved X-ray imaging of eutectic cellular patterns evolving during solidification of ternary Al–Cu–Ag alloys
  11. Reassessment of the Mg–Ge binary system using CALPHAD supported by first-principles calculation
  12. A quantitative modeling of the unloading behavior of metals during a tensile test
  13. A technique for diameter enlargement in SiC crystal growth
  14. Applied
  15. Thermal and chemical stability of Cr2AlC in contact with α-Al2O3 and NiAl
  16. Microstructure and mechanical properties of Zn25Al3Cu based composites with large Al2O3 particles at room and elevated temperatures
  17. An investigation on Incoloy800-SS304 clad plate by explosive welding
  18. Effect of grain boundary precipitates on vibration damping of FeüCrüMgüAl/Si alloy
  19. Adsorption of metal ions on magnetic carbon nanomaterials bearing chitosan-functionalized silica
  20. Tensile and in-vitro degradation study of electro spun fibrous mat produced from eri silk fibroin
  21. Study of the influence of UV-irradiation on the photodegradation of plasticized poly(para-tert-butylstyrene) films
  22. Enhanced photocatalytic activity of beryllium doped titania in visible light on the degradation of methyl orange dye
  23. Progress in chemistry modelling for vapour and aerosol transport analyses
  24. DGM News
  25. Personal
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110436/html
Scroll to top button