Grain boundary plane distributions in aluminas evolving by normal and abnormal grain growth and displaying different complexions
-
Shen J. Dillon
, Herb Miller , Martin P. Harmer und Gregory S. Rohrer
Abstract
The grain boundary character distributions of selected doped aluminas were measured from normal and abnormal populations. The relative energies of the A-, C-, and R-planes of undoped alumina were also measured. There is an inverse relationship between the population of grain boundaries and the relative energies of grain boundary planes in undoped alumina. This relationship is found to be qualitative for abnormal grains, whose interfacial anisotropy may be affected by kinetic factors. It is found that the relative grain boundary anisotropy correlates with the temperature dependence of grain boundary complexion transitions in a particular system that is prone to abnormal grain growth. However, there is no direct correlation between the total anisotropy of the grain boundary character distribution and that system's propensity to undergo a particular complexion transition. Therefore, anisotropy will significantly affect the microstructural evolution in systems that are prone to abnormal grain growth, but the magnitude of anisotropy is not a sufficient selection criterion for determining which systems will undergo abnormal grain growth.
References
[1] S.J.Dillon, M.Tang, W.C.Carter, M.P.Harmer: Acta Mater.55 (2007) 6208.10.1016/j.actamat.2007.07.029Suche in Google Scholar
[2] M.Tang, W.C.Carter, R.M.Cannon: Phys. Rev. B: Condens. Matter and Materials Physics.73 (2006) 024102/1.10.1103/PhysRevB.73.024102Suche in Google Scholar
[3] D.R.Clarke: Ultramicroscopy4 (1979) 33.10.1016/0304-3991(79)90006-8Suche in Google Scholar
[4] D.W.Susnitzky, C.B.Carter: J. Am. Ceram. Soc.73 (1990) 2485.10.1111/j.1151-2916.1990.tb07616.xSuche in Google Scholar
[5] M.K.Cinibulk, H.J.Kleebe, G.A.Schneider, M.Rühle: J. Am. Ceram. Soc.76 (1993) 2801.10.1111/j.1151-2916.1993.tb04019.xSuche in Google Scholar
[6] H.J.Kleebe, M.K.Cinibulk, R.M.Cannon, M.Rühle: J. Am. Ceram. Soc.76 (1993) 1969.10.1111/j.1151-2916.1993.tb08319.xSuche in Google Scholar
[7] I.Tanaka, H.-J.Kleebe, M.K.Cinibulk, J.Bruley, D.R.Clarke, M.Rühle: J. Am. Ceram. Soc.77 (1994) 911.10.1111/j.1151-2916.1994.tb07246.xSuche in Google Scholar
[8] H.Gu, X.Pan, I.Tanaka, R.M.Cannon, M.J.Hoffmann, H.Muellejans, M.Rühle. Mat. Sci. Forum207–209 (1996) 729.10.4028/www.scientific.net/MSF.207-209.729Suche in Google Scholar
[9] Y.M.Chiang, H.Wang, J.R.Lee: Journal of Microscopy (Oxford).191 (1998) 275. PMid:9767492;10.1046/j.1365-2818.1998.00377.xSuche in Google Scholar PubMed
[10] R.O.Ritchie, X.F.Zhang, L.C.de Jonghe: Materials Research Society Symposium Proceedings 819 (2004) 3.Suche in Google Scholar
[11] A.Avishai, C.Scheu, W.D.Kaplan: Acta Mater.53 (2005) 1559.10.1016/j.actamat.2004.12.009Suche in Google Scholar
[12] M.Baram, W.D.Kaplan: J. Mater. Sci.41 (2006) 7775.10.1007/s10853-006-0897-7Suche in Google Scholar
[13] R.Wirth: Contrib. Mineral. Petrol.124 (1996) 44.10.1007/s004100050172Suche in Google Scholar
[14] H.D.Ackler, Y.-M.Chiang: J. Am. Ceram. Soc.80 (1997) 1893.Suche in Google Scholar
[15] L.Franz, R.Wirth: Contrib. Mineral. Petrol.129 (1997) 268.10.1007/s004100050337Suche in Google Scholar
[16] R.R.Brydson, S.-C.Chen, F.L.Riley, S.M.-X.Pan, M.Rühle: J. Am. Ceram. Soc.81 (1998) 369.Suche in Google Scholar
[17] O.S.Kwon, S.H.Hong, J.H.Lee, U.J.Chung, D.Y.Kim, N.M.Hwang: Acta Mater.50 (2002) 4865.10.1016/S1359-6454(02)00355-5Suche in Google Scholar
[18] S.-Y.Chung, S.-J.L.Kang: Acta Mater.51 (2003) 2345.10.1016/S1359-6454(03)00042-9Suche in Google Scholar
[19] H.Qian, J.Luo: Appl. Phys. Lett.91 (2007) 061909.10.1063/1.2768315Suche in Google Scholar
[20] H.Qian, J.Luo, Y.-M.Chiang: Acta Mater.56 (2008) 862.10.1016/j.actamat.2007.10.049Suche in Google Scholar
[21] S.J.Dillon, M.P.Harmer: J. Am. Ceram. Soc.91 (2008) 2304.10.1111/j.1551-2916.2008.02454.xSuche in Google Scholar
[22] S.J.Dillon, M.P.Harmer: J. Am. Ceram. Soc.91 (2008) 2314.10.1111/j.1551-2916.2008.02432.xSuche in Google Scholar
[23] S.J.Dillon, M.P.Harmer: Acta Mater.55 (2007) 5247.10.1016/j.actamat.2007.04.051Suche in Google Scholar
[24] S.Baik, C.L.White: J. Am. Ceram. Soc.70 (1987) 682.10.1111/j.1151-2916.1987.tb05739.xSuche in Google Scholar
[25] S.Baik, J.H.Moon: J. Am. Ceram. Soc.74 (1991) 819.10.1111/j.1151-2916.1991.tb06931.xSuche in Google Scholar
[26] W.D.Kaplan, H.Muellejans, M.Rühle, J.Roedel, N.Claussen: J. Am. Ceram. Soc.78 (1995) 2841.10.1111/j.1151-2916.1995.tb08064.xSuche in Google Scholar
[27] J.Cho, C.M.Wang, H.M.Chan, J.M.Rickman, M.P.Harmer: J. Mater. Res.16 (2001) 425.10.1557/JMR.2001.0064Suche in Google Scholar
[28] J.Cho, C.M.Wang, H.M.Chan, J.M.Rickman, M.P.Harmer: Acta Mater.47 (1999) 4197.10.1016/S1359-6454(99)00278-5Suche in Google Scholar
[29] J.-K.Park, D.-Y.Kim, H.-Y.Lee, J.Blendell, C.Handwerker: J. Am. Ceram. Soc.86 (2003) 1014.10.1111/j.1151-2916.2003.tb03410.xSuche in Google Scholar
[30] S.-H.Lee, D.-Y.Kim, N.M.Hwang: J. Eur. Ceram. Soc.22 (2002) 317.10.1016/S0955-2219(01)00281-3Suche in Google Scholar
[31] K.L.Gavrilov, S.J.Bennison, K.R.Mikeska, J.M.Chabala, R.Levi-Setti: J. Am. Ceram. Soc.82 (1999) 1001.Suche in Google Scholar
[32] S.Baik: J. Am. Ceram. Soc.69 (1986) C101.10.1111/j.1151-2916.1986.tb04780.xSuche in Google Scholar
[33] C.W.Park, D.Y.Yoon: J. Am. Ceram. Soc.84 (2001) 456.Suche in Google Scholar
[34] S.J.Bennison, M.P.Harmer: Ceramic Transactions.7 (1990) 13.Suche in Google Scholar
[35] G.S.Thompson, P.A.Henderson, M.P.Harmer, G.C.Wei, W.H.Rhodes: J. Am. Ceram. Soc.87 (2004) 1879.Suche in Google Scholar
[36] I.MacLaren, R.M.Cannon, M.A.Gülgün, R.Voytovych, N.Popescu-Pogrion, C.Scheu, U.Täffner, M.Rühle: J. Am. Ceram. Soc.86 (2003) 650.10.1111/j.1151-2916.2003.tb03354.xSuche in Google Scholar
[37] D.M.Saylor, A.Morawiec, G.S.Rohrer: Acta Mater.51 (2003) 3663.10.1016/S1359-6454(03)00181-2Suche in Google Scholar
[38] S.Kobayashi, T.Inomata, H.Kobayashi, S.Tsurekawa, T.Watanabe: J. Mater. Sci.43 (2008) 3792.10.1007/s10853-007-2236-zSuche in Google Scholar
[39] L.Tan, K.Sridharan, T.R.Allen, R.K.Nanstad, D.A.McClintock: J. Nucl. Mater.374 (2008) 270.10.1016/j.jnucmat.2007.08.015Suche in Google Scholar
[40] Y.Chen, C.A.Schuh: Phys. Rev. B. Condens. Matter and Materials Physics.76 (2007) 064111/1.Suche in Google Scholar
[41] H.Kokawa, M.Shimada, M.Michiuchi, Z.J.Wang, Y.S.Sato: Acta Mater.55 (2007) 5401.10.1016/j.actamat.2007.06.005Suche in Google Scholar
[42] L.Tan, K.Sridharan, T.R.Allen: J. Nucl. Mater.371 (2007) 171.10.1016/j.jnucmat.2007.05.002Suche in Google Scholar
[43] T.Watanabe, S.Tsurekawa: Mater. Sci. Eng. A: Structural Materials: Properties, Microstructure and Processing. A387–A389 (2004) 447.10.1016/j.msea.2004.01.140Suche in Google Scholar
[44] S.Tsurekawa, T.Watanabe, H.Watanabe, N.Tamari: Key Eng. Mater.247 (2003) 327.10.4028/www.scientific.net/KEM.247.327Suche in Google Scholar
[45] M.Shimada, H.Kokawa, Z.J.Wang, Y.S.Sato, I.Karibe: Acta Mater.50 (2002) 2331.10.1016/S1359-6454(02)00064-2Suche in Google Scholar
[46] S.J.Dillon, G.S.Rohrer: Acta Mater. in Press (2008).Suche in Google Scholar
[47] D.M.Saylor, A.Morawiec, G.S.Rohrer: Acta Mater.51 (2003) 3675.10.1016/S1359-6454(03)00182-4Suche in Google Scholar
[48] J.Gruber, D.C.George, A.P.Kuprat, G.S.Rohrer, A.D.Rollett: Scripta Mater.53 (2005) 351.Suche in Google Scholar
[49] G.S.Rohrer, J.Gruber, A.D.Rollett: Proceedings of the 15th International Conference on Texture of Materials. submitted (2007).Suche in Google Scholar
[50] E.A.Holm, G.N.Hassold, M.A.Miodownik: Acta Mater.49 (2001) 2981.10.1016/S1359-6454(01)00207-5Suche in Google Scholar
[51] G.N.Hassold, E.A.Holm, M.A.Miodownik: Mater. Sci. Technol.19 (2003) 683.10.1179/026708303225002893Suche in Google Scholar
[52] U.Upmanyu, G.N.Hassold, A.Kazaryan, E.A.Holm, Y.Wang, B.Patton, D.J.Srolovitz: Interface Sci.10 (2002) 201.10.1023/A:1015832431826Suche in Google Scholar
[53] Y.Pang, P.Wynblatt: J. Am. Ceram. Soc.89 (2006) 666.10.1111/j.1551-2916.2005.00759.xSuche in Google Scholar
[54] F.Papillon, P.Wynblatt, G.S.Rohrer: Mater. Sci. Forum467–470 (2004) 789.10.4028/www.scientific.net/MSF.467-470.789Suche in Google Scholar
[55] P.Wynblatt, Z.Shi: J. Mater. Sci.40 (2005) 2765.10.1007/s10853-005-2406-9Suche in Google Scholar
[56] D.M.Saylor, B.El Dasher, Y.Pang, H.M.Miller, P.Wynblatt, A.D.Rollett, G.S.Rohrer: J. Am. Ceram. Soc.87 (2004) 724.10.1111/j.1551-2916.2004.00724.xSuche in Google Scholar
[57] S.J.Dillon, M.P.Harmer: J. Eur. Ceram. Soc. (2008).Suche in Google Scholar
[58] R.D.Monahan, J.W.Halloran: J. Am. Ceram. Soc.62 (1979) 564.10.1111/j.1151-2916.1979.tb12731.xSuche in Google Scholar
[59] K.J.Morrissey, C.B.Carter: J. Am. Ceram. Soc.67 (1984) 292.10.1111/j.1151-2916.1984.tb19521.xSuche in Google Scholar
[60] K.A.Berry, M.P.Harmer: J. Am. Ceram. Soc.69 (1986) 143.10.1111/j.1151-2916.1986.tb04719.xSuche in Google Scholar
[61] R.F.Cook, A.G.Schrott: J. Am. Ceram. Soc.71 (1988) 50.10.1111/j.1151-2916.1988.tb05759.xSuche in Google Scholar
[62] C.A.Handwerker, J.M.Dynys, R.M.Cannon, R.L.Coble: J. Am. Ceram. Soc.73 (1990) 1371.10.1111/j.1151-2916.1990.tb05207.xSuche in Google Scholar
[63] J.Rödel, A.M.Glaeser: J. Am. Ceram. Soc.73 (1990) 3292.10.1111/j.1151-2916.1990.tb06452.xSuche in Google Scholar
[64] H.Song, R.Coble: J. Am. Ceram. Soc.73 (1990) 2086.10.1111/j.1151-2916.1990.tb05272.xSuche in Google Scholar
[65] A.Kebbede, G.L.Messing, A.H.Carim: J. Am. Ceram. Soc.80 (1997) 2814.10.1111/j.1151-2916.1997.tb03198.xSuche in Google Scholar
[66] J.Tartaj, G.L.Messing: J. Eur. Ceram. Soc.17 (1997) 719.10.1016/S0955-2219(96)00091-XSuche in Google Scholar
[67] Y.-M.Kim, S.-H.Hong, D.-Y.Kim: J. Am. Ceram. Soc.83 (2000) 2809.Suche in Google Scholar
[68] G.S.Cargill, III, C.M.Wang, J.M.Rickman, H.M.Chan, M.P.Harmer: Materials Research Society Symposium Proceedings. 654 (2001) AA1 1/1.10.1557/PROC-654-AA1.1.1Suche in Google Scholar
[69] C.-M.Wang, J.Cho, H.M.Chan, M.P.Harmer, J.M.Rickman: J. Am. Ceram. Soc.84 (2001) 1010.10.1111/j.1151-2916.2001.tb00783.xSuche in Google Scholar
[70] W.W.Mullins: J. Appl. Phys.28 (1957) 333.10.1063/1.1722742Suche in Google Scholar
[71] D.M.Saylor, G.S.Rohrer: J. Am. Ceram. Soc.82 (1999) 1529.Suche in Google Scholar
[72] D.M.Saylor, B.S.El-Dasher, B.L.Adams, G.S.Rohrer: Metall. Mater. Trans. A35 (2004) 1981.10.1007/s11661-004-0147-zSuche in Google Scholar
[73] D.M.Saylor, G.S.Rohrer: J. Am. Ceram. Soc.85 (2002) 2799.Suche in Google Scholar
[74] M.Kitayama, A.M.Glaeser: J. Am. Ceram. Soc.85 (2002) 611.Suche in Google Scholar
[75] J.-H.Choi, D.-Y.Kim, B.J.Hockey, S.M.Wiederhorn, C.A.Handwerker, J.E.Blendell, W.C.Carter, A.R.Roosen: J. Am. Ceram. Soc.80 (1997) 62.10.1111/j.1151-2916.1997.tb02791.xSuche in Google Scholar
[76] D.M.Saylor, B.El Dasher, T.Sano, G.S.Rohrer: J. Am. Ceram. Soc.87 (2004) 670.10.1111/j.1551-2916.2004.00670.xSuche in Google Scholar
[77] W.Yang, L.-Q.Chen, G.L.Messing: Mat. Sci. Eng. A195 (1995) 179.10.1016/0921-5093(94)06517-9Suche in Google Scholar
[78] S.J.Dillon, M.P.Harmer: J. Am. Ceram. Soc.90 (2007) 996.10.1111/j.1551-2916.2007.01512.xSuche in Google Scholar
[79] S.J.Dillon, M.P.Harmer, G.S.Rohrer: J. Am. Ceram. Soc., in preparation (2008).Suche in Google Scholar
[80] D.Kinderlehrer, I.Livshits, G.S.Rohrer, S.Ta'asan, P.Yu: Mater. Sci. Forum467–470 (2004) 1063.10.4028/www.scientific.net/MSF.467-470.1063Suche in Google Scholar
[81] S.J.Dillon, M.P.Harmer: J. Eur. Ceram. Soc.28 (2008) 1485.10.1016/j.jeurceramsoc.2007.12.018Suche in Google Scholar
© 2010, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- The 7th International Workshop on Interfaces: New Materials via Interfacial Control
- Basic
- First principles based predictions of the toughness of a metal/oxide interface
- The role of interfaces in the behavior of magnetic tunnel junction structures
- Applications of aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy to thin oxide films and interfaces
- Van der Waals-London dispersion interaction framework for experimentally realistic carbon nanotube systems
- Determination of grain boundary potentials in ceramics: Combining impedance spectroscopy and inline electron holography
- Grain boundary plane distributions in aluminas evolving by normal and abnormal grain growth and displaying different complexions
- Theoretical study on the structure and energetics of intergranular glassy film in Si3N4-SiO2 ceramics
- Inter-granular glassy phases in the low-CaO-doped HIPed Si3N4 ceramics: a review
- Applied
- Sintering of fully faceted crystalline particles
- Grain growth kinetics and segregation in yttria tetragonal zirconia polycrystals
- A new method to measure monoclinic depth profile in zirconia-based ceramics from X-ray diffraction data
- The role of Si impurities in the transient dopant segregation and precipitation in yttrium-doped alumina
- Using microfabricated devices to determine the fracture strength of materials
- Spark plasma sintering of self-doped alumina powders
- High density carbon materials obtained at relatively low temperature by spark plasma sintering of carbon nanofibers
- Application of new forming and sintering techniques to obtain hydroxyapatite and β-TCP nanostructured composites
- Silver-hydroxyapatite nanocomposites as bactericidal and fungicidal materials
- Cu-Ni-YSZ anodes for solid oxide fuel cell by mechanical alloying processing
- Rapid transient-liquid-phase bonding of Al2O3 with microdesigned Ni/Nb/Ni interlayers
- DGM News
- Personal
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- The 7th International Workshop on Interfaces: New Materials via Interfacial Control
- Basic
- First principles based predictions of the toughness of a metal/oxide interface
- The role of interfaces in the behavior of magnetic tunnel junction structures
- Applications of aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy to thin oxide films and interfaces
- Van der Waals-London dispersion interaction framework for experimentally realistic carbon nanotube systems
- Determination of grain boundary potentials in ceramics: Combining impedance spectroscopy and inline electron holography
- Grain boundary plane distributions in aluminas evolving by normal and abnormal grain growth and displaying different complexions
- Theoretical study on the structure and energetics of intergranular glassy film in Si3N4-SiO2 ceramics
- Inter-granular glassy phases in the low-CaO-doped HIPed Si3N4 ceramics: a review
- Applied
- Sintering of fully faceted crystalline particles
- Grain growth kinetics and segregation in yttria tetragonal zirconia polycrystals
- A new method to measure monoclinic depth profile in zirconia-based ceramics from X-ray diffraction data
- The role of Si impurities in the transient dopant segregation and precipitation in yttrium-doped alumina
- Using microfabricated devices to determine the fracture strength of materials
- Spark plasma sintering of self-doped alumina powders
- High density carbon materials obtained at relatively low temperature by spark plasma sintering of carbon nanofibers
- Application of new forming and sintering techniques to obtain hydroxyapatite and β-TCP nanostructured composites
- Silver-hydroxyapatite nanocomposites as bactericidal and fungicidal materials
- Cu-Ni-YSZ anodes for solid oxide fuel cell by mechanical alloying processing
- Rapid transient-liquid-phase bonding of Al2O3 with microdesigned Ni/Nb/Ni interlayers
- DGM News
- Personal