Home Inter-granular glassy phases in the low-CaO-doped HIPed Si3N4 ceramics: a review
Article
Licensed
Unlicensed Requires Authentication

Inter-granular glassy phases in the low-CaO-doped HIPed Si3N4 ceramics: a review

  • Hui Gu , Isao Tanaka , Rowland M. Cannon , Xiaoqing Pan and Manfred Rühle
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

This review outlines the essence of a progressive study on the glassy inter-granular film (IGF) in a model ceramic system, the low-CaO-doped HIPed high-purity Si3N4. This was initiated from the finding of a systematic variation of equilibrium IGF thickness following the dopant chemistry, manifesting its fundamental important to ceramic processing. By employing analytical transmission electron microscopy to measure the local chemistry in IGF, however, significant discrepancy was found between trends of local IGF chemistry and thickness. A stable IGF composition was revealed in this system, while a bi-level distribution of Ca segregation establishes a correspondence between the IGF structure and the surface crystallography. The detection of similar levels of nitrogen in IGF through the whole series further supports the presence of a rather stable IGF chemistry. After the saturation of dopants in the stable IGF, extra CaO was found to re-distribute in pockets by enrichment at tips, leading to a liquid phase separation with the Ca-rich phase wetting the entrance zone contacting IGF. The perspective for establishing a comprehensive correlation between the inter-granular phases and the bi-modal microstructure induced by faster growth of basal facets is briefly discussed to pave the way for future work.


* Correspondence address Prof. Hui Gu, State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China Dingxi Road 1295, Shanghai 2005, P. R. of China Tel.: +86 21 5241 2318, Fax: +86 21 5241 3122, E-mail:

References

[1] D.R.Clarke: Ultramicroscopy4 (1979) 33.10.1016/0304-3991(79)90006-8Search in Google Scholar

[2] D.R.Clarke: J. Am. Ceram. Soc.70 (1987) 15.10.1111/j.1151-2916.1987.tb04846.xSearch in Google Scholar

[3] M.K.Cinibulk, H.-J.Kleebe, M.Rühle: J. Am. Ceram. Soc.76 (1993) 426.10.1111/j.1151-2916.1993.tb03801.xSearch in Google Scholar

[4] H.-J.Kleebe, M.K.Cinibulk, R.M.Cannon, M.Rühle: J. Am. Ceram. Soc.76 (1993) 1969.10.1111/j.1151-2916.1993.tb08319.xSearch in Google Scholar

[5] I.Tanaka, H.-J.Kleebe, M.K.Cinibulk, J.Bruley, D.R.Clarke, M.Rühle: J. Am. Ceram. Soc.77 (1994) 911.10.1111/j.1151-2916.1994.tb07246.xSearch in Google Scholar

[6] C.-M.Wang, X.Pan, M.J.Hoffmann, R.M.Cannon, M.Rühle: J. Am. Ceram. Soc.79 (1996) 788.Search in Google Scholar

[7] X.Pan, H.Gu, R.van Weeren, S.C.Danforth, R.M.Cannon, M.Rühle: J. Am. Ceram. Soc.79 (1996) 2313.10.1111/j.1151-2916.1996.tb08978.xSearch in Google Scholar

[8] H.-J.Kleebe: J. Ceram. Soc. Jpn.105 (1997) 453.10.2109/jcersj.105.453Search in Google Scholar

[9] R.M.Cannon, M.Rühle, M.J.Hoffmann, R.H.French, H.Gu, A.P.Tomsia, E.Saiz: Ceram. Transac.118 (2000) 427.Search in Google Scholar

[10] M.Bobeth, D.R.Clarke, W.Pompe: J. Am. Ceram. Soc.82 (1999) 1537.Search in Google Scholar

[11] D.R.Clarke, in: M.J.Hoffmann, G.Petzow (Eds.), Tailoring of Mechanical Properties of Si3N4 Ceramics. Kluwer Academic: Netherland (1994) 291.10.1007/978-94-011-0992-5_21Search in Google Scholar

[12] C.M.Bishop, R.M.Cannon, W.C.Carter: Acta Mater.53 (2005) 4755.10.1016/j.actamat.2005.07.008Search in Google Scholar

[13] M.Tang, W.C.Carter, R.M.Cannon: Phys. Rev. B73 (2006) 024102.10.1103/PhysRevB.73.024102Search in Google Scholar

[14] I.MacLaren, R.M.Cannon, M.A.Gülgün, M.Rühle: J. Am. Ceram. Soc.86 (2003) 650.10.1111/j.1151-2916.2003.tb03354.xSearch in Google Scholar

[15] M.A.GülgünS.Sturm, R.M.Cannon, M.Rühle: Inter. J. Mater. Res.99 (2008) 1324.Search in Google Scholar

[16] S.J.Dillon, M.Tang, W.C.Carter, M.P.Hammer: Acta Mater.55 (2007) 6208.10.1016/j.actamat.2007.07.029Search in Google Scholar

[17] M.F.Chi, H.Gu, P.X.Qian, X.Wang, P.L.Wang: Inter. J. Mater. Res.96 (2005) 486.Search in Google Scholar

[18] P.X.Qian, H.Gu, F.Aldinger: Inter. J. Mater. Res.99 (2008) 240Search in Google Scholar

[19] J.Bruley, I.Tanaka, H.-J.Kleebe, M.Rühle: Anal. Chim. Acta297 (1994) 97.10.1016/0003-2670(94)00058-1Search in Google Scholar

[20] I.Tanaka, J.Bruley, H.Gu, M.J.Hoffmann, H.-J.Kleebe, R.M.Cannon, D.R.Clarke, M.Rühle, in: M.J.Hoffmann, G.Petzow (Eds.), Tailoring of Mechanical Properties of Si3N4 Ceramics. Kluwer Academic: Netherland (1994) 275.10.1007/978-94-011-0992-5_20Search in Google Scholar

[21] H.Gu, M.Ceh, S.Stemmer, H.Müllejans, M.Rühle: Ultramicroscopy59 (1995) 215.10.1016/0304-3991(95)00030-5Search in Google Scholar

[22] H.Gu, R.M.Cannon, M.Rühle: J. Mater. Res.13 (1998) 376.10.1557/JMR.1998.0050Search in Google Scholar

[23] H.Gu, X.Pan, R.M.Cannon, I.Tanaka, M.J.Hoffmann, H.Müllejans, M.Rühle: Mater. Sci. Forum207-209 (1996) 729.10.4028/www.scientific.net/MSF.207-209.729Search in Google Scholar

[24] H.Gu, X.Pan, R.M.Cannon, M.Rühle: J. Am. Ceram. Soc.77 (1998) 3125.10.1111/j.1151-2916.1998.tb02747.xSearch in Google Scholar

[25] H.Gu: J. Am. Ceram. Soc.85 (2002) 33.Search in Google Scholar

[26] G.B.Winkelman, C.Dwyer, T.S.Hudson, D.Nguyen-Manh, M.Döblinger, R.L.Satet, M.J.Hoffmann, D.J.H.Cockayne: Appl. Phys. Lett.87 (2005) 061911.10.1063/1.2009067Search in Google Scholar

[27] N.Shibata, S.J.Pennycook, T.R.Gosnell, G.S.Painter, W.A.Shelton, P.F.Becher: Nature428 (2004) 730. PMid:15085126;10.1038/nature02410Search in Google Scholar PubMed

[28] S.Garofalini, W.Luo: J. Am. Ceram. Soc.86 (2003) 1741.10.1111/j.1151-2916.2003.tb03549.xSearch in Google Scholar

[29] X.T.Su, S.H.Garofalini: J. Appl. Phys.97 (2005) 113526.10.1063/1.1925767Search in Google Scholar

[30] H.Gu, M.Rühle, in: C.L.Briant, C.B.Carter, E.L.Hall (Eds.), Interfacial Engineering for Optimized Properties, MRS Symp. Proc. Vol. 458 (1997) 73.Search in Google Scholar

[31] H.Gu, R.M.Cannon, I.Tanaka, M.Rühle: Mater. Sci. Engin. A422 (2006) 51.10.1016/j.msea.2006.01.012Search in Google Scholar

[32] I.Tanaka, K.Igashira, T.Okamoto, K.Niihara, R.M.Cannon: J. Am. Ceram. Soc.78 (1995) 673.10.1111/j.1151-2916.1995.tb08231.xSearch in Google Scholar

[33] J.A.S.Ikeda, Y.-M.Chiang, A.J.Garratt-Reed, J.B.Vander Sande: J. Am. Ceram. Soc.76 (1993) 2447.10.1111/j.1151-2916.1993.tb03965.xSearch in Google Scholar

[34] H.Gu: Ultramicroscopy76 (1999) 173.10.1016/S0304-3991(99)00003-0Search in Google Scholar

[35] H.Gu, in: C.L.Briant, C.B.Carter, E.L.Hall (Eds.), Interfacial Engineering for Optimized Properties, MRS Symp. Proc.458 (1997) 115.10.1557/PROC-458-115Search in Google Scholar

[36] H.Gu, Y.Shinoda: Interface Sci.8 (2000) 269.10.1023/A:1008720404554Search in Google Scholar

[37] H.Gu, T.Nagano, G.D.Zhan, M.Mitomo, F.Wakai: J. Am. Ceram. Soc.86 (2003) 1753.10.1111/j.1151-2916.2003.tb03550.xSearch in Google Scholar

[38] H.Gu: Mater. Trans.45 (2004) 2091.10.2320/matertrans.45.2091Search in Google Scholar

[39] J.Hu, H.Gu, Z.Chen, S.Tan, D.Jiang, M.Rühle: Acta Mater.55 (2007) 5666.10.1016/j.actamat.2007.06.037Search in Google Scholar

[40] H.Gu, R.M.Cannon, H.J.Seifert, M.J.Hoffmann, I.Tanaka: J. Am. Ceram. Soc.85 (2002) 25.Search in Google Scholar

Received: 2008-10-29
Accepted: 2009-10-28
Published Online: 2013-06-11
Published in Print: 2010-01-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. The 7th International Workshop on Interfaces: New Materials via Interfacial Control
  6. Basic
  7. First principles based predictions of the toughness of a metal/oxide interface
  8. The role of interfaces in the behavior of magnetic tunnel junction structures
  9. Applications of aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy to thin oxide films and interfaces
  10. Van der Waals-London dispersion interaction framework for experimentally realistic carbon nanotube systems
  11. Determination of grain boundary potentials in ceramics: Combining impedance spectroscopy and inline electron holography
  12. Grain boundary plane distributions in aluminas evolving by normal and abnormal grain growth and displaying different complexions
  13. Theoretical study on the structure and energetics of intergranular glassy film in Si3N4-SiO2 ceramics
  14. Inter-granular glassy phases in the low-CaO-doped HIPed Si3N4 ceramics: a review
  15. Applied
  16. Sintering of fully faceted crystalline particles
  17. Grain growth kinetics and segregation in yttria tetragonal zirconia polycrystals
  18. A new method to measure monoclinic depth profile in zirconia-based ceramics from X-ray diffraction data
  19. The role of Si impurities in the transient dopant segregation and precipitation in yttrium-doped alumina
  20. Using microfabricated devices to determine the fracture strength of materials
  21. Spark plasma sintering of self-doped alumina powders
  22. High density carbon materials obtained at relatively low temperature by spark plasma sintering of carbon nanofibers
  23. Application of new forming and sintering techniques to obtain hydroxyapatite and β-TCP nanostructured composites
  24. Silver-hydroxyapatite nanocomposites as bactericidal and fungicidal materials
  25. Cu-Ni-YSZ anodes for solid oxide fuel cell by mechanical alloying processing
  26. Rapid transient-liquid-phase bonding of Al2O3 with microdesigned Ni/Nb/Ni interlayers
  27. DGM News
  28. Personal
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110242/html
Scroll to top button