Grain boundary plane distributions in aluminas evolving by normal and abnormal grain growth and displaying different complexions
-
Shen J. Dillon
, Herb Miller , Martin P. Harmer and Gregory S. Rohrer
Abstract
The grain boundary character distributions of selected doped aluminas were measured from normal and abnormal populations. The relative energies of the A-, C-, and R-planes of undoped alumina were also measured. There is an inverse relationship between the population of grain boundaries and the relative energies of grain boundary planes in undoped alumina. This relationship is found to be qualitative for abnormal grains, whose interfacial anisotropy may be affected by kinetic factors. It is found that the relative grain boundary anisotropy correlates with the temperature dependence of grain boundary complexion transitions in a particular system that is prone to abnormal grain growth. However, there is no direct correlation between the total anisotropy of the grain boundary character distribution and that system's propensity to undergo a particular complexion transition. Therefore, anisotropy will significantly affect the microstructural evolution in systems that are prone to abnormal grain growth, but the magnitude of anisotropy is not a sufficient selection criterion for determining which systems will undergo abnormal grain growth.
References
[1] S.J.Dillon, M.Tang, W.C.Carter, M.P.Harmer: Acta Mater.55 (2007) 6208.10.1016/j.actamat.2007.07.029Search in Google Scholar
[2] M.Tang, W.C.Carter, R.M.Cannon: Phys. Rev. B: Condens. Matter and Materials Physics.73 (2006) 024102/1.10.1103/PhysRevB.73.024102Search in Google Scholar
[3] D.R.Clarke: Ultramicroscopy4 (1979) 33.10.1016/0304-3991(79)90006-8Search in Google Scholar
[4] D.W.Susnitzky, C.B.Carter: J. Am. Ceram. Soc.73 (1990) 2485.10.1111/j.1151-2916.1990.tb07616.xSearch in Google Scholar
[5] M.K.Cinibulk, H.J.Kleebe, G.A.Schneider, M.Rühle: J. Am. Ceram. Soc.76 (1993) 2801.10.1111/j.1151-2916.1993.tb04019.xSearch in Google Scholar
[6] H.J.Kleebe, M.K.Cinibulk, R.M.Cannon, M.Rühle: J. Am. Ceram. Soc.76 (1993) 1969.10.1111/j.1151-2916.1993.tb08319.xSearch in Google Scholar
[7] I.Tanaka, H.-J.Kleebe, M.K.Cinibulk, J.Bruley, D.R.Clarke, M.Rühle: J. Am. Ceram. Soc.77 (1994) 911.10.1111/j.1151-2916.1994.tb07246.xSearch in Google Scholar
[8] H.Gu, X.Pan, I.Tanaka, R.M.Cannon, M.J.Hoffmann, H.Muellejans, M.Rühle. Mat. Sci. Forum207–209 (1996) 729.10.4028/www.scientific.net/MSF.207-209.729Search in Google Scholar
[9] Y.M.Chiang, H.Wang, J.R.Lee: Journal of Microscopy (Oxford).191 (1998) 275. PMid:9767492;10.1046/j.1365-2818.1998.00377.xSearch in Google Scholar PubMed
[10] R.O.Ritchie, X.F.Zhang, L.C.de Jonghe: Materials Research Society Symposium Proceedings 819 (2004) 3.Search in Google Scholar
[11] A.Avishai, C.Scheu, W.D.Kaplan: Acta Mater.53 (2005) 1559.10.1016/j.actamat.2004.12.009Search in Google Scholar
[12] M.Baram, W.D.Kaplan: J. Mater. Sci.41 (2006) 7775.10.1007/s10853-006-0897-7Search in Google Scholar
[13] R.Wirth: Contrib. Mineral. Petrol.124 (1996) 44.10.1007/s004100050172Search in Google Scholar
[14] H.D.Ackler, Y.-M.Chiang: J. Am. Ceram. Soc.80 (1997) 1893.Search in Google Scholar
[15] L.Franz, R.Wirth: Contrib. Mineral. Petrol.129 (1997) 268.10.1007/s004100050337Search in Google Scholar
[16] R.R.Brydson, S.-C.Chen, F.L.Riley, S.M.-X.Pan, M.Rühle: J. Am. Ceram. Soc.81 (1998) 369.Search in Google Scholar
[17] O.S.Kwon, S.H.Hong, J.H.Lee, U.J.Chung, D.Y.Kim, N.M.Hwang: Acta Mater.50 (2002) 4865.10.1016/S1359-6454(02)00355-5Search in Google Scholar
[18] S.-Y.Chung, S.-J.L.Kang: Acta Mater.51 (2003) 2345.10.1016/S1359-6454(03)00042-9Search in Google Scholar
[19] H.Qian, J.Luo: Appl. Phys. Lett.91 (2007) 061909.10.1063/1.2768315Search in Google Scholar
[20] H.Qian, J.Luo, Y.-M.Chiang: Acta Mater.56 (2008) 862.10.1016/j.actamat.2007.10.049Search in Google Scholar
[21] S.J.Dillon, M.P.Harmer: J. Am. Ceram. Soc.91 (2008) 2304.10.1111/j.1551-2916.2008.02454.xSearch in Google Scholar
[22] S.J.Dillon, M.P.Harmer: J. Am. Ceram. Soc.91 (2008) 2314.10.1111/j.1551-2916.2008.02432.xSearch in Google Scholar
[23] S.J.Dillon, M.P.Harmer: Acta Mater.55 (2007) 5247.10.1016/j.actamat.2007.04.051Search in Google Scholar
[24] S.Baik, C.L.White: J. Am. Ceram. Soc.70 (1987) 682.10.1111/j.1151-2916.1987.tb05739.xSearch in Google Scholar
[25] S.Baik, J.H.Moon: J. Am. Ceram. Soc.74 (1991) 819.10.1111/j.1151-2916.1991.tb06931.xSearch in Google Scholar
[26] W.D.Kaplan, H.Muellejans, M.Rühle, J.Roedel, N.Claussen: J. Am. Ceram. Soc.78 (1995) 2841.10.1111/j.1151-2916.1995.tb08064.xSearch in Google Scholar
[27] J.Cho, C.M.Wang, H.M.Chan, J.M.Rickman, M.P.Harmer: J. Mater. Res.16 (2001) 425.10.1557/JMR.2001.0064Search in Google Scholar
[28] J.Cho, C.M.Wang, H.M.Chan, J.M.Rickman, M.P.Harmer: Acta Mater.47 (1999) 4197.10.1016/S1359-6454(99)00278-5Search in Google Scholar
[29] J.-K.Park, D.-Y.Kim, H.-Y.Lee, J.Blendell, C.Handwerker: J. Am. Ceram. Soc.86 (2003) 1014.10.1111/j.1151-2916.2003.tb03410.xSearch in Google Scholar
[30] S.-H.Lee, D.-Y.Kim, N.M.Hwang: J. Eur. Ceram. Soc.22 (2002) 317.10.1016/S0955-2219(01)00281-3Search in Google Scholar
[31] K.L.Gavrilov, S.J.Bennison, K.R.Mikeska, J.M.Chabala, R.Levi-Setti: J. Am. Ceram. Soc.82 (1999) 1001.Search in Google Scholar
[32] S.Baik: J. Am. Ceram. Soc.69 (1986) C101.10.1111/j.1151-2916.1986.tb04780.xSearch in Google Scholar
[33] C.W.Park, D.Y.Yoon: J. Am. Ceram. Soc.84 (2001) 456.Search in Google Scholar
[34] S.J.Bennison, M.P.Harmer: Ceramic Transactions.7 (1990) 13.Search in Google Scholar
[35] G.S.Thompson, P.A.Henderson, M.P.Harmer, G.C.Wei, W.H.Rhodes: J. Am. Ceram. Soc.87 (2004) 1879.Search in Google Scholar
[36] I.MacLaren, R.M.Cannon, M.A.Gülgün, R.Voytovych, N.Popescu-Pogrion, C.Scheu, U.Täffner, M.Rühle: J. Am. Ceram. Soc.86 (2003) 650.10.1111/j.1151-2916.2003.tb03354.xSearch in Google Scholar
[37] D.M.Saylor, A.Morawiec, G.S.Rohrer: Acta Mater.51 (2003) 3663.10.1016/S1359-6454(03)00181-2Search in Google Scholar
[38] S.Kobayashi, T.Inomata, H.Kobayashi, S.Tsurekawa, T.Watanabe: J. Mater. Sci.43 (2008) 3792.10.1007/s10853-007-2236-zSearch in Google Scholar
[39] L.Tan, K.Sridharan, T.R.Allen, R.K.Nanstad, D.A.McClintock: J. Nucl. Mater.374 (2008) 270.10.1016/j.jnucmat.2007.08.015Search in Google Scholar
[40] Y.Chen, C.A.Schuh: Phys. Rev. B. Condens. Matter and Materials Physics.76 (2007) 064111/1.Search in Google Scholar
[41] H.Kokawa, M.Shimada, M.Michiuchi, Z.J.Wang, Y.S.Sato: Acta Mater.55 (2007) 5401.10.1016/j.actamat.2007.06.005Search in Google Scholar
[42] L.Tan, K.Sridharan, T.R.Allen: J. Nucl. Mater.371 (2007) 171.10.1016/j.jnucmat.2007.05.002Search in Google Scholar
[43] T.Watanabe, S.Tsurekawa: Mater. Sci. Eng. A: Structural Materials: Properties, Microstructure and Processing. A387–A389 (2004) 447.10.1016/j.msea.2004.01.140Search in Google Scholar
[44] S.Tsurekawa, T.Watanabe, H.Watanabe, N.Tamari: Key Eng. Mater.247 (2003) 327.10.4028/www.scientific.net/KEM.247.327Search in Google Scholar
[45] M.Shimada, H.Kokawa, Z.J.Wang, Y.S.Sato, I.Karibe: Acta Mater.50 (2002) 2331.10.1016/S1359-6454(02)00064-2Search in Google Scholar
[46] S.J.Dillon, G.S.Rohrer: Acta Mater. in Press (2008).Search in Google Scholar
[47] D.M.Saylor, A.Morawiec, G.S.Rohrer: Acta Mater.51 (2003) 3675.10.1016/S1359-6454(03)00182-4Search in Google Scholar
[48] J.Gruber, D.C.George, A.P.Kuprat, G.S.Rohrer, A.D.Rollett: Scripta Mater.53 (2005) 351.Search in Google Scholar
[49] G.S.Rohrer, J.Gruber, A.D.Rollett: Proceedings of the 15th International Conference on Texture of Materials. submitted (2007).Search in Google Scholar
[50] E.A.Holm, G.N.Hassold, M.A.Miodownik: Acta Mater.49 (2001) 2981.10.1016/S1359-6454(01)00207-5Search in Google Scholar
[51] G.N.Hassold, E.A.Holm, M.A.Miodownik: Mater. Sci. Technol.19 (2003) 683.10.1179/026708303225002893Search in Google Scholar
[52] U.Upmanyu, G.N.Hassold, A.Kazaryan, E.A.Holm, Y.Wang, B.Patton, D.J.Srolovitz: Interface Sci.10 (2002) 201.10.1023/A:1015832431826Search in Google Scholar
[53] Y.Pang, P.Wynblatt: J. Am. Ceram. Soc.89 (2006) 666.10.1111/j.1551-2916.2005.00759.xSearch in Google Scholar
[54] F.Papillon, P.Wynblatt, G.S.Rohrer: Mater. Sci. Forum467–470 (2004) 789.10.4028/www.scientific.net/MSF.467-470.789Search in Google Scholar
[55] P.Wynblatt, Z.Shi: J. Mater. Sci.40 (2005) 2765.10.1007/s10853-005-2406-9Search in Google Scholar
[56] D.M.Saylor, B.El Dasher, Y.Pang, H.M.Miller, P.Wynblatt, A.D.Rollett, G.S.Rohrer: J. Am. Ceram. Soc.87 (2004) 724.10.1111/j.1551-2916.2004.00724.xSearch in Google Scholar
[57] S.J.Dillon, M.P.Harmer: J. Eur. Ceram. Soc. (2008).Search in Google Scholar
[58] R.D.Monahan, J.W.Halloran: J. Am. Ceram. Soc.62 (1979) 564.10.1111/j.1151-2916.1979.tb12731.xSearch in Google Scholar
[59] K.J.Morrissey, C.B.Carter: J. Am. Ceram. Soc.67 (1984) 292.10.1111/j.1151-2916.1984.tb19521.xSearch in Google Scholar
[60] K.A.Berry, M.P.Harmer: J. Am. Ceram. Soc.69 (1986) 143.10.1111/j.1151-2916.1986.tb04719.xSearch in Google Scholar
[61] R.F.Cook, A.G.Schrott: J. Am. Ceram. Soc.71 (1988) 50.10.1111/j.1151-2916.1988.tb05759.xSearch in Google Scholar
[62] C.A.Handwerker, J.M.Dynys, R.M.Cannon, R.L.Coble: J. Am. Ceram. Soc.73 (1990) 1371.10.1111/j.1151-2916.1990.tb05207.xSearch in Google Scholar
[63] J.Rödel, A.M.Glaeser: J. Am. Ceram. Soc.73 (1990) 3292.10.1111/j.1151-2916.1990.tb06452.xSearch in Google Scholar
[64] H.Song, R.Coble: J. Am. Ceram. Soc.73 (1990) 2086.10.1111/j.1151-2916.1990.tb05272.xSearch in Google Scholar
[65] A.Kebbede, G.L.Messing, A.H.Carim: J. Am. Ceram. Soc.80 (1997) 2814.10.1111/j.1151-2916.1997.tb03198.xSearch in Google Scholar
[66] J.Tartaj, G.L.Messing: J. Eur. Ceram. Soc.17 (1997) 719.10.1016/S0955-2219(96)00091-XSearch in Google Scholar
[67] Y.-M.Kim, S.-H.Hong, D.-Y.Kim: J. Am. Ceram. Soc.83 (2000) 2809.Search in Google Scholar
[68] G.S.Cargill, III, C.M.Wang, J.M.Rickman, H.M.Chan, M.P.Harmer: Materials Research Society Symposium Proceedings. 654 (2001) AA1 1/1.10.1557/PROC-654-AA1.1.1Search in Google Scholar
[69] C.-M.Wang, J.Cho, H.M.Chan, M.P.Harmer, J.M.Rickman: J. Am. Ceram. Soc.84 (2001) 1010.10.1111/j.1151-2916.2001.tb00783.xSearch in Google Scholar
[70] W.W.Mullins: J. Appl. Phys.28 (1957) 333.10.1063/1.1722742Search in Google Scholar
[71] D.M.Saylor, G.S.Rohrer: J. Am. Ceram. Soc.82 (1999) 1529.Search in Google Scholar
[72] D.M.Saylor, B.S.El-Dasher, B.L.Adams, G.S.Rohrer: Metall. Mater. Trans. A35 (2004) 1981.10.1007/s11661-004-0147-zSearch in Google Scholar
[73] D.M.Saylor, G.S.Rohrer: J. Am. Ceram. Soc.85 (2002) 2799.Search in Google Scholar
[74] M.Kitayama, A.M.Glaeser: J. Am. Ceram. Soc.85 (2002) 611.Search in Google Scholar
[75] J.-H.Choi, D.-Y.Kim, B.J.Hockey, S.M.Wiederhorn, C.A.Handwerker, J.E.Blendell, W.C.Carter, A.R.Roosen: J. Am. Ceram. Soc.80 (1997) 62.10.1111/j.1151-2916.1997.tb02791.xSearch in Google Scholar
[76] D.M.Saylor, B.El Dasher, T.Sano, G.S.Rohrer: J. Am. Ceram. Soc.87 (2004) 670.10.1111/j.1551-2916.2004.00670.xSearch in Google Scholar
[77] W.Yang, L.-Q.Chen, G.L.Messing: Mat. Sci. Eng. A195 (1995) 179.10.1016/0921-5093(94)06517-9Search in Google Scholar
[78] S.J.Dillon, M.P.Harmer: J. Am. Ceram. Soc.90 (2007) 996.10.1111/j.1551-2916.2007.01512.xSearch in Google Scholar
[79] S.J.Dillon, M.P.Harmer, G.S.Rohrer: J. Am. Ceram. Soc., in preparation (2008).Search in Google Scholar
[80] D.Kinderlehrer, I.Livshits, G.S.Rohrer, S.Ta'asan, P.Yu: Mater. Sci. Forum467–470 (2004) 1063.10.4028/www.scientific.net/MSF.467-470.1063Search in Google Scholar
[81] S.J.Dillon, M.P.Harmer: J. Eur. Ceram. Soc.28 (2008) 1485.10.1016/j.jeurceramsoc.2007.12.018Search in Google Scholar
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- The 7th International Workshop on Interfaces: New Materials via Interfacial Control
- Basic
- First principles based predictions of the toughness of a metal/oxide interface
- The role of interfaces in the behavior of magnetic tunnel junction structures
- Applications of aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy to thin oxide films and interfaces
- Van der Waals-London dispersion interaction framework for experimentally realistic carbon nanotube systems
- Determination of grain boundary potentials in ceramics: Combining impedance spectroscopy and inline electron holography
- Grain boundary plane distributions in aluminas evolving by normal and abnormal grain growth and displaying different complexions
- Theoretical study on the structure and energetics of intergranular glassy film in Si3N4-SiO2 ceramics
- Inter-granular glassy phases in the low-CaO-doped HIPed Si3N4 ceramics: a review
- Applied
- Sintering of fully faceted crystalline particles
- Grain growth kinetics and segregation in yttria tetragonal zirconia polycrystals
- A new method to measure monoclinic depth profile in zirconia-based ceramics from X-ray diffraction data
- The role of Si impurities in the transient dopant segregation and precipitation in yttrium-doped alumina
- Using microfabricated devices to determine the fracture strength of materials
- Spark plasma sintering of self-doped alumina powders
- High density carbon materials obtained at relatively low temperature by spark plasma sintering of carbon nanofibers
- Application of new forming and sintering techniques to obtain hydroxyapatite and β-TCP nanostructured composites
- Silver-hydroxyapatite nanocomposites as bactericidal and fungicidal materials
- Cu-Ni-YSZ anodes for solid oxide fuel cell by mechanical alloying processing
- Rapid transient-liquid-phase bonding of Al2O3 with microdesigned Ni/Nb/Ni interlayers
- DGM News
- Personal
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- The 7th International Workshop on Interfaces: New Materials via Interfacial Control
- Basic
- First principles based predictions of the toughness of a metal/oxide interface
- The role of interfaces in the behavior of magnetic tunnel junction structures
- Applications of aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy to thin oxide films and interfaces
- Van der Waals-London dispersion interaction framework for experimentally realistic carbon nanotube systems
- Determination of grain boundary potentials in ceramics: Combining impedance spectroscopy and inline electron holography
- Grain boundary plane distributions in aluminas evolving by normal and abnormal grain growth and displaying different complexions
- Theoretical study on the structure and energetics of intergranular glassy film in Si3N4-SiO2 ceramics
- Inter-granular glassy phases in the low-CaO-doped HIPed Si3N4 ceramics: a review
- Applied
- Sintering of fully faceted crystalline particles
- Grain growth kinetics and segregation in yttria tetragonal zirconia polycrystals
- A new method to measure monoclinic depth profile in zirconia-based ceramics from X-ray diffraction data
- The role of Si impurities in the transient dopant segregation and precipitation in yttrium-doped alumina
- Using microfabricated devices to determine the fracture strength of materials
- Spark plasma sintering of self-doped alumina powders
- High density carbon materials obtained at relatively low temperature by spark plasma sintering of carbon nanofibers
- Application of new forming and sintering techniques to obtain hydroxyapatite and β-TCP nanostructured composites
- Silver-hydroxyapatite nanocomposites as bactericidal and fungicidal materials
- Cu-Ni-YSZ anodes for solid oxide fuel cell by mechanical alloying processing
- Rapid transient-liquid-phase bonding of Al2O3 with microdesigned Ni/Nb/Ni interlayers
- DGM News
- Personal