Home Applications of aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy to thin oxide films and interfaces
Article
Licensed
Unlicensed Requires Authentication

Applications of aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy to thin oxide films and interfaces

  • Maria Varela , Jaume Gazquez , Andy R. Lupini , Julia T. Luck , Maria A. Torija , Manish Sharma , Chris Leighton , Mike D. Biegalski , Hans M. Christen , Matt Murfitt , Niklas Dellby , Ondrej Krivanek and Stephen J. Pennycook
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Aberration correction in the scanning transmission electron microscope allows spatial resolutions of the order of one Ångström to be routinely achieved. When combined with electron energy loss spectroscopy, it is possible to simultaneously map the structure, the chemistry and even the electronic properties of materials in one single experiment. Here we will apply these techniques to the characterization of thin films and interfaces based on complex oxides with the perovskite structure. The relatively large lattice parameter of these materials combined with the fact that most of them have absorption edges within the reach of the spectrometer optics makes these materials ideal for these experiments. We will show how it is possible to map the chemistry of interfaces atomic plane by atomic plane, including light elements such as O. Applications to cobaltite and titanate thin films will be described.


* Correspondence address Dr. Maria Varela, Oak Ridge National Laboratory, P. O. Box 2008, BLDG 4515, MS 6071Oak Ridge, TN 37831-6071, U. S. A. Tel.: +1 865 574 6287, Fax: +1 865 574 6098, E-mail:

References

[1] S.Okamoto, A.Millis: Nature428 (2004) 630. PMid:15071589;10.1038/nature02450Search in Google Scholar PubMed

[2] S.Thiel, G.Hammerl, A.Schmehl, C.W.Schneider, J.Mannhart: Science313 (2006) 1942. PMid:16931719;10.1126/science.1131091Search in Google Scholar PubMed

[3] J.Chakalian, J.W.Freeland, G.Srajer, J.Strempfer, G.Khaullin, J.C.Cezar, T.Charlton, R.Dagliesh, C.Bernhard, G.Cristiani, H.-U.Habermeier, B.Keimer: Nat. Phys.2 (2006) 244.10.1038/nphys272Search in Google Scholar

[4] A.Brinkman, M.Huijben, M.van Zalk, J.Huijben, U.Zeitler, J.C.Maan, W.G.van der Wiel, G.Rijnders, D.H.A.Blank, H.Hilgenkamp: Nat. Mater.6 (2007) 493. PMid:17546035;10.1038/nmat1931Search in Google Scholar PubMed

[5] N.Reyren, S.Thiel, A.D.Caviglia, L. FittingKourkoutis, G.Hammerl, C.Richter, C.W.Schneider, T.Kopp, A.-S.Rüetschi, D.Jaccard, M.Gabay, D.A.Muller, J.-M.Triscone, J.Mannhart: Science317 (2007) 1196. PMid:17673621;10.1126/science.1146006Search in Google Scholar PubMed

[6] J.García-Barriocanal, A.Rivera-Calzada, M.Varela, Z.Sefrioui, E.Iborra, C.Leon, S.J.Pennycook, J.Santamaría: Science321 (2008) 676. PMid:18669859;10.1126/science.1156393Search in Google Scholar PubMed

[7] N.D.Browning, M.F.Chisholm, S.J.Pennycook: Nature366 (1993) 143.10.1038/366143a0Search in Google Scholar

[8] P.D.Nellist, S.J.Pennycook: Phys. Rev. Lett.81 (1998) 4156.10.1103/PhysRevLett.81.4156Search in Google Scholar

[9] P.D.Nellist, M.F.Chisholm, N.Dellby, O.L.Krivanek, M.F.Murfitt, Z.S.Szilagyi, A.R.Lupini, A.Y.Borisevich, W.H.Sides, S.J.Pennycook: Science305 (2004) 1741. PMid:15375260;10.1126/science.1100965Search in Google Scholar PubMed

[10] C.L.Jia, M.Lentzen, K.Urban: Microsc. Microanal.10 (2004) 174. PMid:15306044;10.1017/S1431927604040425Search in Google Scholar PubMed

[11] M.Bosman, V.J.Keast, J.L.Garcia-Muñoz, A.J.D'Alfonso, S.D.Findlay, L.J.Allen: Phys. Rev. Lett.99 (2007) 086102. PMid:17930958;10.1103/PhysRevLett.99.086102Search in Google Scholar

[12] K.Kimoto, T.Asaka, T.Nagai, M.Saito, Y.Matsui, K.Ishizuka: Nature450 (2007) 702. PMid:17965728;10.1038/nature06352Search in Google Scholar

[13] M.Varela, S.D.Findlay, A.R.Lupini, H.M.Christen, A.Y.Borisevich, N.Dellby, O.L.Krivanek, P.D.Nellist, M.P.Oxley, L.J.Allen, S.J.Pennycook: Phys. Rev. Lett.92 (2004) 095502. PMid:15089484;10.1103/PhysRevLett.92.095502Search in Google Scholar

[14] M.Varela, A.R.Lupini, K.van Benthem, A.Y.Borisevich, M.F.Chisholm, N.Shibata, E.Abe, S.J.Pennycook: Ann. Rev. Mater. Res.35 (2005) 539.10.1146/annurev.matsci.35.102103.090513Search in Google Scholar

[15] M.A.Torija, M.Sharma, M.R.Fitzsimmons, M.Varela, C.Leighton: J. Appl. Phys.104 (2008) 023901.10.1063/1.2955725Search in Google Scholar

[16] Y.Ito, R.F.Klie, N.D.Browning, T.J.Mazanec: J. Am. Cer. Soc.85 (2002) 969.Search in Google Scholar

[17] C.L.Jia, M.Lentzen, K.Urban: Science299 (2003) 870. PMid:12574624;10.1126/science.1079121Search in Google Scholar

[18] A.Bleloch, A.Lupini: Materials Today7 (2004) 42.10.1016/S1369-7021(04)00570-XSearch in Google Scholar

[19] N.Shibata, M.F.Chisholm, A.Nakamura, S.J.Pennycook, T.Yamamoto, Y.Ikuhara: Science316 (2007) 82. PMid:17412952;10.1126/science.1136155Search in Google Scholar

[20] M.Bosman, M.Watanabe, D.T.L.Alexander, V.J.Keast: Ultramicrosc. 106 (2006) 1024. PMid:16876322;10.1016/j.ultramic.2006.04.016Search in Google Scholar

[21] C.Jeanguillaume, C.Colliex: Ultramicrosc.28 (1989) 252.10.1016/0304-3991(89)90304-5Search in Google Scholar

[22] J.A.Hunt, D.B.Williams: Ultramicrosc.38 (1991) 47.10.1016/0304-3991(91)90108-ISearch in Google Scholar

[23] R.F.Egerton: Electron Energy Loss in the Electron Microscope, Plenum Press, New York (1996), 2nd ed.10.1007/978-1-4757-5099-7Search in Google Scholar

[24] D.A.Muller, L.Fitting-Kourkoutis, M.Murfitt, J.H.Song, H.Y.Wang, J.Silcox, N.Dellby, O.L.Krivanek: Science319 (2008) 1073. PMid:18292338;10.1126/science.1148820Search in Google Scholar PubMed

[25] M.P.Oxley, E.C.Cosgriff, L.J.Allen: Phys. Rev. Lett.94 (2005) 203906. PMid:16090252;10.1103/PhysRevLett.94.203906Search in Google Scholar PubMed

[26] M.P.Oxley, M.Varela, T.J.Pennycook, K.van Benthem, S.D.Findlay, A.J.D'Alfonso, L.J.Allen, S.J.Pennycook: Phys. Rev. B76 (2007) 064303.10.1103/PhysRevB.76.064303Search in Google Scholar

[27] A.J.D'AlfonsoS.D.Findlay, M.P.Oxley, L.J.Allen: Ultramicrosc.108 (2008) 677. PMid:18077094;10.1016/j.ultramic.2007.10.011Search in Google Scholar PubMed

[28] M.Kim, G.Duscher, N.D.Browning, K.Sohlberg, S.T.Pantelides, S.J.Pennycook: Phys. Rev. Lett.86 (2001) 4056. PMid:11328094;10.1103/PhysRevLett.86.4056Search in Google Scholar PubMed

[29] R.F.Klie, J.P.Buban, M.Varela, A.Franceschetti, C.Jooss, Y.Zhu, S.T.Pantelides, S.J.Pennycook: Nature435 (2005) 475. PMid:15917804;10.1038/nature03644Search in Google Scholar PubMed

Received: 2008-10-11
Accepted: 2009-10-23
Published Online: 2013-06-11
Published in Print: 2010-01-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. The 7th International Workshop on Interfaces: New Materials via Interfacial Control
  6. Basic
  7. First principles based predictions of the toughness of a metal/oxide interface
  8. The role of interfaces in the behavior of magnetic tunnel junction structures
  9. Applications of aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy to thin oxide films and interfaces
  10. Van der Waals-London dispersion interaction framework for experimentally realistic carbon nanotube systems
  11. Determination of grain boundary potentials in ceramics: Combining impedance spectroscopy and inline electron holography
  12. Grain boundary plane distributions in aluminas evolving by normal and abnormal grain growth and displaying different complexions
  13. Theoretical study on the structure and energetics of intergranular glassy film in Si3N4-SiO2 ceramics
  14. Inter-granular glassy phases in the low-CaO-doped HIPed Si3N4 ceramics: a review
  15. Applied
  16. Sintering of fully faceted crystalline particles
  17. Grain growth kinetics and segregation in yttria tetragonal zirconia polycrystals
  18. A new method to measure monoclinic depth profile in zirconia-based ceramics from X-ray diffraction data
  19. The role of Si impurities in the transient dopant segregation and precipitation in yttrium-doped alumina
  20. Using microfabricated devices to determine the fracture strength of materials
  21. Spark plasma sintering of self-doped alumina powders
  22. High density carbon materials obtained at relatively low temperature by spark plasma sintering of carbon nanofibers
  23. Application of new forming and sintering techniques to obtain hydroxyapatite and β-TCP nanostructured composites
  24. Silver-hydroxyapatite nanocomposites as bactericidal and fungicidal materials
  25. Cu-Ni-YSZ anodes for solid oxide fuel cell by mechanical alloying processing
  26. Rapid transient-liquid-phase bonding of Al2O3 with microdesigned Ni/Nb/Ni interlayers
  27. DGM News
  28. Personal
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110244/html
Scroll to top button