Startseite Technik The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing

  • Feng Kang , Jin Qiang Liu , Jing Tao Wang , Xiang Zhao , Xiaolin Wu und Kenong Xia
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The strength and ductility in an Mg-3 wt.% Al-1 wt.% Zn alloy were both increased after a single pass of equal channel angular pressing with back pressure (BP-ECAP). The strong soft texture in the case of ECAP without backpressure is changed to a much weak texture with some transformed to hard orientation, and together with the stronger grain refinement strengthening effect, contributes to the higher strength and ductility in samples ECAP processed with backpressure. Dynamic recrystallization and the activation of new deformation modes other than slip on the base plane during ECAP with backpressure lead to more effective grain refining and less soft texture development.


* Correspondence address Professor Jing Tao Wang, Department of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094, P. R. China Tel.: +86 025 8430 3983 E-mail:

References

[1] T.Mukai, M.Yamanoi, H.Watanabe, K.Higashi: Scripta Mater.45 (2001) 89.10.1016/S1359-6462(01)00996-4Suche in Google Scholar

[2] W.J.Kim, C.W.An, Y.S.Kim, S.I.Hong: Scripta Mater.47 (2002) 39.Suche in Google Scholar

[3] S.R.Agnew, J.A.Horton, T.M.Lillo, D.W.Brown: Scripta Mater.50 (2004) 377.10.1016/j.scriptamat.2003.10.006Suche in Google Scholar

[4] W.J.Kim, Y.K.Sa: Scripta Mater.54 (2006) 1391.10.1016/j.scriptamat.2005.11.066Suche in Google Scholar

[5] W.J.Kim, S.I.Hong, Y.S.Kim, S.H.Min, H.T.Jeong, J.D.Lee: Acta Mater.51 (2003) 3293.10.1016/S1359-6454(03)00161-7Suche in Google Scholar

[6] H.K.Kim, W.J.Kim: Mater. Sci. Eng. A385 (2004) 300.Suche in Google Scholar

[7] J.T.Wang, M.X.Liang, Q.Kuang, M.Gurvan, G.Chen, K.Xia: Mater. Sci. Forum29 (2005) 370.Suche in Google Scholar

[8] A.Yamashita, Z.Horita, T.G.Langdon: Mater. Sci. Eng. A300 (2001) 142.10.1016/S0921-5093(00)01660-9Suche in Google Scholar

[9] S.X.Ding, C.P.Chang, P.W.Kao: Metall. Mater. Trans. A40 (2009) 415.10.1007/s11661-008-9747-3Suche in Google Scholar

[10] T.Liu, J.Liu, L.Lu, Y.Liu, Z.Wang: Mater. Trans.50 (2009) 765.10.2320/matertrans.MRA2008429Suche in Google Scholar

[11] Y.Estrin, S.B.Yi, H.G.Brokmeier, Z.Zuberova, S.C.Yoon, H.S.Kim, R.J.Hellmig: Int. J. Mater. Res.99 (2008) 50.Suche in Google Scholar

[12] Z.Zuberova, Y.Estrin, T.T.Lamarka, M.Janecek, R.J.Hellmig, M.Krieger: J. Mater. Proc. Tech.184 (2007) 294.10.1016/j.jmatprotec.2006.11.098Suche in Google Scholar

[13] L.Vuong, L.Jiang, J.J.Jonas, S.Godet, B.Verlinden, P.Van Houtte: Canadian Metall. Quart.47 (2008) 437.Suche in Google Scholar

[14] K.Xia, J.T.Wang, X.Wu, G.Chen and M.Gurvan: Mater. Sci. Eng. A410–411 (2005) 324.10.1016/j.msea.2005.08.123Suche in Google Scholar

[15] R.Lapovok, Y.Estrin, M.V.Popov, S.Rundell, T.Williams: J. Mater. Sci.10.1007/s10853-008-2685-z.Suche in Google Scholar

[16] S.R.Agnew, P.Mehrotra, T.M.Lillo, G.M.Stoica, P.K.Liaw: Acta Mater.53 (2005) 3135.10.1016/j.actamat.2005.02.019Suche in Google Scholar

[17] F.Kang, J.Q.Liu, J.T.Wang, X.Zhao: Scripta Mater.61 (2009) 844.10.1016/j.scriptamat.2009.07.011Suche in Google Scholar

[18] J.T.Wang, D.L.Yin, J.Q.Liu, J.Tao, Y.L.Su, X.Zhao: Scripta Mater.59 (2008) 63.10.1016/j.scriptamat.2008.02.029Suche in Google Scholar

[19] V.M.Segal, V.I.Reznikov, A.E.Drobyshevkiy, V.I.Kopylov: Russ. Metall.1 (1981) 99.Suche in Google Scholar

[20] F.Kang, J.T.Wang, Y.Su, K.Xia: J. Mater. Sci.42 (2007) 160.Suche in Google Scholar

[21] R.Lapovok: Mater. Sci. Forum503–504 (2006) 37.10.4028/www.scientific.net/MSF.503-504.37Suche in Google Scholar

[22] L.S.TóthR.Arruffat-Massion, L.Germain, S.C.Baik, S.Suwas: Acta Mater.52 (2004) 1885.10.1016/j.actamat.2003.12.027Suche in Google Scholar

[23] M.F.Ashby: Phil. Mag.21 (1970) 399.10.1080/14786437008238426Suche in Google Scholar

[24] S.I.Hong, G.T.GrayIII, J.J.Lewandowski: Acta Mater.41 (1993) 2337.10.1016/0956-7151(93)90314-ISuche in Google Scholar

[25] J.A.del Valle, M.T.Pérez-Prado, O.A.Ruano: Mater. Sci. Eng. A355 (2003) 68.10.1016/S0921-5093(03)00043-1Suche in Google Scholar

[26] S.E.Ion, F.J.Humphreys, S.H.White: Acta Mater.30 (1982) 1909.10.1016/0001-6160(82)90031-1Suche in Google Scholar

[27] S.L.Semiatin, P.B.Berbon, T.G.Langdon: Scripta Mater.44 (2001) 135.10.1016/S1359-6462(00)00565-0Suche in Google Scholar

[28] R.Z.Valiev, T.G.Langdon: Prog. Mater. Sci.51 (2006) 881.10.1016/j.pmatsci.2006.02.003Suche in Google Scholar

[29] I.J.Beyerlein, S.Li, D.J.Alexander: Mater. Sci. Eng. A410–411 (2005) 201.10.1016/j.msea.2005.08.113Suche in Google Scholar

[30] R.Arruffat-Massion, L.S.Tóth, J.P.Mathieu: Scripta Mater.54 (2006) 1667.10.1016/j.scriptamat.2006.01.004Suche in Google Scholar

Received: 2009-6-10
Accepted: 2009-10-9
Published Online: 2013-06-11
Published in Print: 2009-12-01

© 2009, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Review of IJMR's centenary year
  5. Proceedings of the SPD Workshop, Melbourne, June 2009
  6. Feature
  7. Processing by severe plastic deformation:an ancient skill adapted for the modern world
  8. Review
  9. Grain refinement and growth induced by severe plastic deformation
  10. Basic
  11. The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
  12. Ductility of ultrafine-grained copper processed by equal-channel angular pressing
  13. Technical parameters affecting grain refinement by high pressure torsion
  14. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
  15. Softening of high purity aluminum and copper processed by high pressure torsion
  16. An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
  17. Deformation mechanisms in an ultra-fine grained Al alloy
  18. Applied
  19. The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
  20. Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
  21. Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
  22. The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
  23. Plastic deformation analysis of accumulative back extrusion
  24. The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
  25. Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
  26. Mg alloy for hydrogen storage processed by SPD
  27. DGM News
  28. Personal/Conferences/Imprint
Heruntergeladen am 1.1.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.110238/html?lang=de
Button zum nach oben scrollen