Startseite Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion

  • Wei Xu , Xiaolin Wu , Roberto B. Figueiredo , Mihai Stoica , Mariana Calin , Jürgen Eckert , Terence G. Langdon und Kenong Xia
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Processing by high-pressure torsion at room temperature was employed to achieve a uniform nanostructure in a metastable Ti67.4Nb24.6Zr5Sn3 bcc β alloy with grains of ∼20 − 60 nm after five turns. By comparison, there was an ultrafine grain structure after equal-channel angular pressing at 903 K. The majority of refined grains were identified as bcc β-titanium with the presence of a small fraction of orthorhombic α″ martensite. It is proposed that the pronounced grain refinement is facilitated by a stress-/strain-induced β → α″ martensitic transformation. However, the presence of a large fraction of β phase in the high-pressure torsion processed samples is attributed to a reverse α″ → β martensitic transformation stimulated by the applied shear stress and the inhibition effect of the nanoscale grains on martensite formation.


* Correspondence address Dr. Wei Xu, Department of Mechanical Engineering, University of Melbourne VIC 3010, Australia. Tel.: +61-3-8344 4197, Fax: +61-3-9347 8784, E-mail:
Assoc. Prof. Kenong Xia, Department of Mechanical Engineering, University of Melbourne VIC 3010, Australia Tel.: +61-3-8344 6664, Fax: +61-3-9347 8784, E-mail:

References

[1] R.Z.Valiev, T.G.Langdon: Prog. Mater. Sci.51 (2006) 881.10.1016/j.pmatsci.2006.02.003Suche in Google Scholar

[2] A.P.Zhilyaev, T.G.Langdon: Prog. Mater. Sci.53 (2008) 893.10.1016/j.pmatsci.2008.03.002Suche in Google Scholar

[3] Y.Iwahashi, Z.Horita, M.Nemoto, T.G.Langdon: Acta Mater.45 (1997) 4733.10.1016/S1359-6454(97)00100-6Suche in Google Scholar

[4] Z.Horita, D.J.Smith, M.Nemoto, R.Z.Valiev, T.G.Langdon: J. Mater. Res.13 (1998) 446.10.1557/JMR.1998.0057Suche in Google Scholar

[5] Z.Horita, K.Ohashi, T.Fujita, K.Kaneko, T.G.Langdon: Adv. Mater.17 (2005) 1599.10.1002/adma.200500069Suche in Google Scholar

[6] Y.H.Zhao, J.F.Bingert, X.Z.Liao, B.Z.Cui, K.Han, A.V.Sergueeva, A.K.Mukherjee, R.Z.Valiev, T.G.Langdon, Y.T.Zhu: Adv. Mater.18 (2006) 2949.10.1002/adma.200601472Suche in Google Scholar

[7] K.Xia, X.Wu: Scr. Mater.53 (2005) 1225.10.1016/j.scriptamat.2005.08.012Suche in Google Scholar

[8] Y.T.Zhu, J.Y.Huang, J.Gubicza, T.Ungár, Y.M.Wang, E.Ma, R.Z.Valiev: J. Mater. Res.18 (2003) 1908.10.1557/JMR.2003.0267Suche in Google Scholar

[9] D.H.Shin, I.Kim, J.Kim, Y.S.Kim, S.L.Semiatin: Acta Mater.51 (2003) 983.10.1016/S1359-6454(02)00501-3Suche in Google Scholar

[10] K.Matsubara, Y.Miyahara, Z.Horita, T.G.Langdon: Metall. Mater. Trans. A35 (2004) 1735.10.1007/s11661-004-0082-zSuche in Google Scholar

[11] R.Z.Valiev, Yu.V.Ivanisenko, E.F.Rauch, B.Baudelet: Acta Mater.44 (1996) 4705.10.1016/S1359-6454(96)00156-5Suche in Google Scholar

[12] Q.Wei, L.Kecskes, T.Jiao, K.T.Hartwig, K.T.Ramesh, E.Ma: Acta Mater.52 (2004) 1859.10.1016/j.actamat.2003.12.025Suche in Google Scholar

[13] Q.Wei, T.Jiao, S.N.Mathaudhu, E.Ma, K.T.Hartwig, K.T.Ramesh: Mater. Sci. Eng. A358 (2003) 266.10.1016/S0921-5093(03)00305-8Suche in Google Scholar

[14] Q.Wei, B.E.Schuster, S.N.Mathaudhu, K.T.Hartwig, L.J.Kecskes, R.J.Dowding, K.T.Ramesh: Mater. Sci. Eng. A493 (2008) 58.10.1016/j.msea.2007.05.126Suche in Google Scholar

[15] Q.Wei, H.T.Zhang, B.E.Schuster, K.T.Ramesh, R.Z.Valiev, L.J.Kecskes, R.J.Dowding, L.Magness, K.Cho: Acta Mater.54 (2006) 4079.10.1016/j.actamat.2006.05.005Suche in Google Scholar

[16] Y.Ivanisenko, I.MacLaren, X.Sauvage, R.Z.Valiev, H.J.Fecht: Acta Mater.54 (2006) 1659.10.1016/j.actamat.2005.11.034Suche in Google Scholar

[17] Y.Ivanisenko, R.Z.Valiev, H.J.Fecht: Mater. Sci. Eng. A390 (2005) 159.10.1016/j.msea.2004.08.071Suche in Google Scholar

[18] D.Hull, D.J.Bacon: Introduction to Dislocations (4th edition), Butterworth-Heinemann, Oxford (2001) 111.10.1016/B978-075064681-9/50002-XSuche in Google Scholar

[19] K.Lu, J.Lu: Mater. Sci. Eng. A375–377 (2004) 38.10.1016/j.msea.2003.10.261Suche in Google Scholar

[20] Y.H.Zhao, Y.T.Zhu, X.Z.Liao, Z.Horita, T.G.Langdon: Appl. Phys. Lett.89 (2006) 121906.10.1063/1.2356310Suche in Google Scholar

[21] L.Balogh, T.Ungar, Y.Zhao, Y.T.Zhu, Z.Horita, C.Xu, T.G.Langdon: Acta Mater.56 (2008) 809.10.1016/j.actamat.2007.10.053Suche in Google Scholar

[22] H.W.Zhang, Z.K.Hei, G.Liu, J.Lu, K.Lu: Acta Mater.51 (2003) 1871.10.1016/S1359-6454(02)00594-3Suche in Google Scholar

[23] Y.H.Zhao, X.Z.Liao, Z.Horita, T.G.Langdon, Y.T.Zhu: Mater. Sci. Eng. A493 (2008) 123.10.1016/j.msea.2007.11.074Suche in Google Scholar

[24] W.Xu, X.Wu, M.Calin, M.Stoica, J.Eckert, K.Xia: Scr. Mater.60 (2009) 1012.10.1016/j.scriptamat.2009.02.043Suche in Google Scholar

[25] D.Kuroda, M.Niinomi, M.Morinaga, Y.Kato, T.Yashiro: Mater. Sci. Eng. A243 (1998) 244.10.1016/S0921-5093(97)00808-3Suche in Google Scholar

[26] Y.L.Hao, S.J.Li, S.Y.Sun, C.Y.Zheng, Q.M.Hu, R.Yang: Appl. Phys. Lett.87 (2005) 091906.10.1063/1.2037192Suche in Google Scholar

[27] W.Xu, K.B.Kim, J.Das, M.Calin, B.Rellinghaus, J.Eckert: Appl. Phys. Lett.89 (2006) 031906.10.1063/1.2222239Suche in Google Scholar

[28] M.Long, H.J.Rack: Biomater.19 (1998) 1621. PMid:9839998;10.1016/S0142-9612(97)00146-4Suche in Google Scholar

[29] M.Morinaga, M.Kato, T.Kamimura, M.Fukumoto, I.Harada, K.Kubo, in: F.H.Froes, I.Caplan (Eds.), Titanium'92, Science and Technology, TMS, Warrendale, PA (1992) 276.Suche in Google Scholar

[30] M.Furukawa, Y.Iwahashi, Z.Horita, M.Nemoto, T.G.Langdon: Mater. Sci. Eng. A257 (1998) 328.10.1016/S0921-5093(98)00750-3Suche in Google Scholar

[31] T.W.Duerig, J.Albrecht, D.Richter, P.Fischer: Acta Metall.30 (1982) 2161.10.1016/0001-6160(82)90137-7Suche in Google Scholar

[32] S.J.Li, T.C.Cui, Y.L.Li, Y.L.Hao, R.Yang: Appl. Phys. Lett.92 (2008) 043128.10.1063/1.2839594Suche in Google Scholar

[33] C.Xu, Z.Horita, T.G.Langdon: J. Mater. Sci.43 (2008) 7286.10.1007/s10853-008-2624-zSuche in Google Scholar

[34] I.Karaman, H.E.Karaca, H.J.Maier, Z.P.Luo: Metall. Mater. Trans. A34 (2003) 2527.10.1007/s11661-003-0012-5Suche in Google Scholar

[35] I.Karaman, A.V.Kulkarn, Z.P.Luo: Phil. Mag.85 (2005) 1729.10.1080/14786430412331331961Suche in Google Scholar

[36] C.X.Huang, Y.L.Gao, G.Yang, S.D.Wu, G.Y.Li, S.X.Li: J. Mater. Res.21 (2006) 1687.10.1557/jmr.2006.0214Suche in Google Scholar

[37] C.X.Huang, G.Yang, B.Deng, S.D.Wu, S.X.Li, Z.F.Zhang: Phil. Mag.87 (2007) 4949.10.1080/14786430701594046Suche in Google Scholar

[38] Q.Meng, N.Zhou, Y.Rong, S.Chen, T.Y.Hsu: Acta Mater.50 (2002) 4563.10.1016/S1359-6454(02)00284-7Suche in Google Scholar

[39] Q.Meng, Y.Rong, T.Y.Hsu: Phys. Rev. B65 (2002) 174118.10.1103/PhysRevB.65.174118Suche in Google Scholar

[40] T.Waitz, T.Antretter, F.D.Fischer, H.P.Karnthaler: Mater. Sci. Tech.24 (2008) 934.10.1179/174328408X302620Suche in Google Scholar

[41] C.M.Wayman, H.K.D.H.Bhadeshia, in: R.W.Cahn, P.Haasen (Eds.), Physical Metallurgy (4th edition), Vol. 2, Elsevier, Amsterdam (1996) 1532.Suche in Google Scholar

[42] E.Hornbogen: Acta Metall.33 (1985) 595.10.1016/0001-6160(85)90024-0Suche in Google Scholar

Received: 2009-4-2
Accepted: 2009-9-7
Published Online: 2013-06-11
Published in Print: 2009-12-01

© 2009, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Review of IJMR's centenary year
  5. Proceedings of the SPD Workshop, Melbourne, June 2009
  6. Feature
  7. Processing by severe plastic deformation:an ancient skill adapted for the modern world
  8. Review
  9. Grain refinement and growth induced by severe plastic deformation
  10. Basic
  11. The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
  12. Ductility of ultrafine-grained copper processed by equal-channel angular pressing
  13. Technical parameters affecting grain refinement by high pressure torsion
  14. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
  15. Softening of high purity aluminum and copper processed by high pressure torsion
  16. An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
  17. Deformation mechanisms in an ultra-fine grained Al alloy
  18. Applied
  19. The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
  20. Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
  21. Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
  22. The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
  23. Plastic deformation analysis of accumulative back extrusion
  24. The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
  25. Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
  26. Mg alloy for hydrogen storage processed by SPD
  27. DGM News
  28. Personal/Conferences/Imprint
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110229/pdf?lang=de
Button zum nach oben scrollen