Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime
-
Frank Bergner
, Michael Schaper , Ralf Hammer , Manfred Jurisch , Andre Kleinwechter und Thomas Chudoba
Abstract
Fabrication, handling and processing of wafers of intrinsically brittle and anisotropic single-crystalline GaAs require a high level of control of the material's response to different loading conditions. The present work is focused on the response to hardness indentation. A short overview on the behaviour of (100) GaAs wafers in several doping conditions over a wide range of indentation loads from nano-indentation up to macro-indentation including sharp and blunt indenters is given. Special attention is paid to the pop-in effect in depth-sensing nano-indentation, to the anisotropy of indentation-induced radial crack formation and to the material's crack resistance obtained from the indentation fracture mechanics approach. We have observed that, under certain conditions, the frequency of formation of radial cracks is essentially different for the two in-plane <110> directions. This observation is attributed to the occurrence of two different kinds of dislocations and to the lack of inversion symmetry. The effect turns out to be closely related to a left – right asymmetry in the material removal caused by wire sawing. This insight has paved the way to the optimisation of the process of wire sawing of GaAs single crystals.
References
[1] R.Hammer: PhD Thesis, University Erlangen-Nürnberg (2002).Suche in Google Scholar
[2] B.Lawn: Fracture of Brittle Solids, Cambridge University Press (1995).Suche in Google Scholar
[3] J.Woirgard, C.Tromas, J.C.Girard, V.Audurier: J. Eur. Ceram. Soc.18 (1998) 2297.10.1016/S0955-2219(98)00083-1Suche in Google Scholar
[4] E.LeBourhis, G.Patriarche: Phil. Mag. Lett.79 (1999) 805.10.1080/095008399176625Suche in Google Scholar
[5] J.E.Bradby, J.S.Williams, J.Wong-Leung, M.V.Swain, P.Munroe: Appl. Phys. Lett.78 (2001) 3235.10.1063/1.1372207Suche in Google Scholar
[6] H.S.Leipner, D.Lorenz, A.Zeckzer, H.Lei, P.Grau: Physica B308 (2001) 446.10.1016/S0921-4526(01)00718-9Suche in Google Scholar
[7] W.W.Gerberich, J.C.Nelson, Lilleodden, P.Anderson, J.T.Wyborek: Acta Mater.44 (1996) 3585.10.1016/1359-6454(96)00010-9Suche in Google Scholar
[8] D.Lorenz, A.Zeckzer, U.Hilpert, P.Grau, A.Johansen, H.S.Leipner: Phys. Rev. B67 (2003) 172101.10.1103/PhysRevB.67.172101Suche in Google Scholar
[9] C.A.Schuh, J.K.Mason, A.C.Lund: Nature Mater.4 (2005) 612.10.1038/nmat1429Suche in Google Scholar
[10] K.Yasutake, Y.Konishi, K.Adachi, Yoshii, M.Umeno, H.Kawabe: Jap. J. Appl. Phys.27 (1988) 2238.10.1143/JJAP.27.2238Suche in Google Scholar
[11] R.Hammer, F.Bergner, T.Flade, M.Jurisch, A.Kleinwechter, M.Schaper: Z. Metallkd.96 (2005) 785.Suche in Google Scholar
[12] F.Ericson, S.Johansson, J.A.Schweitz: Mater. Sci. Eng. A105 (1988) 131.10.1016/0025-5416(88)90489-2Suche in Google Scholar
[13] G.Michot, A.George, A.Chabli-Brenac, E.Molva: Scripta Metall.22 (1988) 1043.10.1016/S0036-9748(88)80100-5Suche in Google Scholar
[14] M.D.Drory: MRS Symp. Proc.468 (1997) 201.10.1557/PROC-468-201Suche in Google Scholar
[15] F.Bergner, U.Bergmann, M.Schaper, R.Hammer, M.Jurisch: Materialprüfung43 (2001) 117.Suche in Google Scholar
[16] M.Schaper, M.Jurisch, F.Bergner, R.Hammer: MRS Symp. Proc.744 (2003) M1.8, 29.10.1557/PROC-744-M1.8Suche in Google Scholar
[17] E.Le Bourhis, G.Patriarche: Prog. Crys. Growth Charac. Mater.47 (2003) 1.10.1016/j.pcrysgrow.2004.09.001Suche in Google Scholar
[18] P.B.Hirsch: Mat. Res. Soc. Proc.2 (1981) 257.10.1557/PROC-2-257Suche in Google Scholar
[19] M.Jurisch, D.Behr, R.Bindemann, T.Bunger, T.Flade, W.Fliegel, R.Hammer, S.Holzig, A.Kiesel, A.Kleinwechter, A.Kohler, U.Kretzer, A.Seidl, B.Weinert: Inst. Phys. Conf. Ser. 166 (2000) 13.Suche in Google Scholar
[20] F.Börner, S.Eichler, A.Polity, R.Krause-Rehberg, R.Hammer, M.Jurisch: J. Appl. Phys.84 (1998) 2255.Suche in Google Scholar
[21] D.Schneider, R.Hammer, M.Jurisch: Semicond. Sci. Technol.14 (1999) 305.10.1088/0268-1242/14/3/017Suche in Google Scholar
[22] T.Chudoba, N.Schwarzer, F.Richter: Surf. Coat. Technol.154 (2002) 140.10.1016/S0257-8972(02)00016-6Suche in Google Scholar
[23] B.Wolf: Cryst. Res. Technol.35 (2000) 377.10.1002/1521-4079(200004)35:4<377::AID-CRAT377>3.0.CO;2-QSuche in Google Scholar
[24] E.Reimann: Materialprüfung42 (2000) 411.Suche in Google Scholar
[25] A.I.Beltzer: Acoustics of Solids, Springer, Berlin (1988).10.1007/978-3-642-83370-0Suche in Google Scholar
[26] G.R.Anstis, P.Chantikul, B.R.Lawn, D.B.Marshall: J. Am. Ceram. Soc.64 (1981) 533.10.1111/j.1151-2916.1981.tb10320.xSuche in Google Scholar
[27] T.Miyoshi, N.Sagawa, T.Sassa: Trans. Jap. Soc. Mech. Eng. A51 (1985) 2489.10.1299/kikaia.51.2489Suche in Google Scholar
[28] A.Briggs: Acoustic Microscopy, Clarendon, Oxford (1992).Suche in Google Scholar
[29] R.Hill: Proc. Phys. Soc. Lond. A65 (1952) 349.10.1088/0370-1298/65/5/307Suche in Google Scholar
[30] R.Mouginot, D.Maugis: J. Mater. Sci.20 (1984) 4354.10.1007/BF00559324Suche in Google Scholar
[31] H.S.Leipner, D.Lorenz, A.Zeckzer, P.Grau: phys. stat. sol. (a)183 (2001) R4.10.1002/1521-396X(200102)183:2<R4::AID-PSSA99994>3.0.CO;2-#Suche in Google Scholar
[32] P.D.Warren, P.Pirouz, S.G.Roberts: Phil. Mag. A50 (1984) L23.10.1080/13642818408238853Suche in Google Scholar
[33] F.Bergner, B.Köhler: Mater. Sci. Forum210 (1996) 831.10.4028/www.scientific.net/MSF.210-213.831Suche in Google Scholar
© 2007, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- In-situ measurement of local strain partitioning in a commercial dual-phase steel
- Threshold strength and residual stress analysis of zirconia–alumina laminates
- Threshold strength prediction for laminar ceramics from bifurcated crack path simulation
- First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films
- Electric-field induced phase transition in a near-surface layer of a PbMg0.33Nb0.67O3-28% PbTiO3 (001) single-crystalline plate
- Modelling the onset of oxide formation on metal surfaces from first principles
- Applied
- Delamination of stiff islands patterned on stretchable substrates
- Crack formation in surface layers with strain gradients
- Theta-like specimens for measuring mechanical properties at the small-scale: effects of non-ideal loading
- Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime
- Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis
- Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
- Review
- Recent advances in piezospectroscopy
- Notifications
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- In-situ measurement of local strain partitioning in a commercial dual-phase steel
- Threshold strength and residual stress analysis of zirconia–alumina laminates
- Threshold strength prediction for laminar ceramics from bifurcated crack path simulation
- First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films
- Electric-field induced phase transition in a near-surface layer of a PbMg0.33Nb0.67O3-28% PbTiO3 (001) single-crystalline plate
- Modelling the onset of oxide formation on metal surfaces from first principles
- Applied
- Delamination of stiff islands patterned on stretchable substrates
- Crack formation in surface layers with strain gradients
- Theta-like specimens for measuring mechanical properties at the small-scale: effects of non-ideal loading
- Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime
- Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis
- Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
- Review
- Recent advances in piezospectroscopy
- Notifications
- DGM News