Home Crack formation in surface layers with strain gradients
Article
Licensed
Unlicensed Requires Authentication

Crack formation in surface layers with strain gradients

  • Alexei E. Romanov , Glenn E. Beltz and James S. Speck
Published/Copyright: May 23, 2013
Become an author with De Gruyter Brill

Abstract

The problem of crack formation in surface layers where a linear profile of elastic strain prevails through the thickness of a layer is investigated. Such strain gradients can be generated, for example, in graded alloy semiconductor layers or due to specific stress relaxation mechanisms in lattice mismatched layers or previously unanticipated dislocation-related strain gradients. The operation of the relaxation mechanisms related to threading dislocation inclination and leading to the strain gradients in nominally compressed AlxGa1 – xN layers grown on buffer layers with smaller lattice constants is discussed. A fracture mechanics model is developed for the calculation of the stress intensity factor of mode I cracks initiated at the surface of the layer exhibiting a linear strain dependence. The critical layer thickness for crack formation in such a gradient elastic field has been found in the framework of this fracture mechanics model. Results of the modeling are compared with experimental observations of crack onset in nominally compressed layers of AlxGa1−xN semiconductors. Good agreement between the model predictions and the experimental data is found.


* Correspondence address, Prof. Dr. Sci. Alexei E. Romanov Ioffe Physico-Technical Institute, Russian Academy of Sciences Polytechnicheskaya 26, Saint Petersburg, R-194021, Russia Tel.: +7 812 292 7304 Fax: +7 812 294 1017 E-mail:

References

[1] R.Heinrich, W.Pompe: Phys. Stat. Sol.40 (1970) 523.10.1002/pssb.19700400210Search in Google Scholar

[2] W.Kreher, W.Pompe: J. Mech. Phys. Sol.33 (1985) 419.10.1016/0022-5096(85)90008-0Search in Google Scholar

[3] W.Pompe, X.Gong, Z.Suo, J.S.Speck: J. Appl. Phys.74 (1993) 6012.10.1063/1.355215Search in Google Scholar

[4] W.Pompe, H.Worch, M.Epple, W.Friess, M.Gelinsky, P.Greil, U.Hempel, D.Scharnweber, K.Schulte: Mater. Sci. Eng. A362 (2003) 40.10.1016/S0921-5093(03)00580-XSearch in Google Scholar

[5] N.Seriani, W.Pompe, L.C.Ciacchi: J. Phys. Chem.110 (2006) 14860.Search in Google Scholar

[6] M.Schreiter, R.GablR.J.Lerchner, C.Hohlfeld, A.Delan, G.Wolf, A.Blueher, B.Katzschner, M.Mertig, W.Pompe: Sens. Actuators B119 (2006) 255.10.1016/j.snb.2005.12.042Search in Google Scholar

[7] J.Hohage, W.Pompe: Thin Solid Films515 (2006) 1767.10.1016/j.tsf.2006.06.041Search in Google Scholar

[8] M.D.Thouless: Annu. Rev. Mater. Sci.25 (1995) 69.10.1146/annurev.ms.25.080195.000441Search in Google Scholar

[9] L.B.Freund, S.Suresh: Thin Film Materials: Stress, Defect Formation and Surface Evolution, Cambridge University Press (2003).Search in Google Scholar

[10] Y.Shiraki, A.Sakai: Surf. Sci. Rep.59 (2005) 153.10.1016/j.surfrep.2005.08.001Search in Google Scholar

[11] P.Cantu, F.Wu, P.Waltereit, S.Keller, A.E.Romanov, U.K.Mishra, S.P.DenBaars, J.S.Speck: Appl. Phys. Lett.83 (2003) 674.10.1063/1.1595133Search in Google Scholar

[12] P.Cantu, F.Wu, P.Waltereit, S.Keller, A.E.Romanov, S.P.DenBaars, J.S.Speck: J. Appl. Phys.97 (2005) 103534.10.1063/1.1897486Search in Google Scholar

[13] D.M.Follstaedt, S.R.Lee, P.P.Provencio, A.A.Allerman, J.A.Floro, M.H.Crawford: Appl. Phys. Lett.87 (2005) 121112.10.1063/1.2056582Search in Google Scholar

[14] A.E.Romanov, J.S.Speck: Appl. Phys. Lett.83 (2003) 2569.10.1063/1.1613360Search in Google Scholar

[15] R.Beanland, D.J.Dunstan, P.J.Goodhew: Adv. Phys.45 (1996) 87.10.1080/00018739600101477Search in Google Scholar

[16] J.W.Hutchinson, Z.Suo: Adv. Appl. Mech.29 (1992) 63.10.1016/S0065-2156(08)70164-9Search in Google Scholar

[17] S.Srinivasan, L.Geng, R.Liu, F.A.Ponce, Y.Narukawa, S.Tanaka: Appl. Phys. Lett.83 (2003) 5187.10.1063/1.1633029Search in Google Scholar

[18] J.A.Floro, D.M.Follstaedt, P.Provencio, S.J.Hearne, S.R.Lee: J. Appl. Phys.96 (2004) 96, 7087.10.1063/1.1812361Search in Google Scholar

[19] N.Itoh, J.C.Rhee, T.Kawabata, S.Koike: J. Appl. Phys.58 (1985) 1828.10.1063/1.336035Search in Google Scholar

[20] L.T.Romano, C.G.Van de Walle, J.W.AgerIII, W.Gotz, R.S.Kern: J. Appl. Phys.87 (2000) 7745.10.1063/1.373529Search in Google Scholar

[21] X.H.Wu, P.Fini, E.J.Tarsa, B.Heying, S.Keller, U.K.Mishra, S.P.DenBaars, J.S.Speck: J. Cryst. Growth189/190 (1998) 231.10.1016/S0022-0248(98)00240-1Search in Google Scholar

[22] E.V.Etzorn, D.R.Clarke: J. Appl. Phys.89 (2001) 1025.10.1063/1.1330243Search in Google Scholar

[23] A.E.Romanov, G.E.Beltz, P.Cantu, F.Wu, S.Keller, S.P.DenBaars, J.S.Speck: Appl. Phys. Lett.89 (2006) 161922.10.1063/1.2352043Search in Google Scholar

[24] A.F.Wright: J. Appl. Phys.82 (1997) 2833.10.1063/1.366114Search in Google Scholar

[25] T.L.Anderson: Fracture Mechanics: Fundamentals and Applications, 2nd Edn., Ann Arbor, CRC Press (1995).Search in Google Scholar

[26] H.F.Bueckner: Z. Angew. Math. Mech.50 (1970) 529.Search in Google Scholar

[27] J.R.Rice: Int. J. Solids Struct.8 (1972) 751.10.1016/0020-7683(72)90040-6Search in Google Scholar

[28] H.Tada, P.C.Paris, G.R.Irwin: The Stress Analysis of Cracks Handbook, 3rd Edn., ASME, New York (2000).10.1115/1.801535Search in Google Scholar

[29] A.J.Monkowski, G.E.Beltz: Int. J. Solids Struct.42 (2005) 581.10.1016/j.ijsolstr.2004.06.023Search in Google Scholar

[30] A.P.Prudnikov, Y.A.Brychkov, O.I.Marychev: Integrals and Series: Special Functions, Nauka, Moscow (1983).Search in Google Scholar

[31] Stress intensity factors handbook, Ed. Y. Murakami, Pergamon, New York (1987).Search in Google Scholar

[32] M.D.Drory, J.W.Ager, T.Suski, I.Grzegory, S.Porowsky: Appl. Phys. Lett.69 (1996) 4044.10.1063/1.117865Search in Google Scholar

Received: 2007-3-12
Accepted: 2007-4-27
Published Online: 2013-05-23
Published in Print: 2007-08-01

© 2007, Carl Hanser Verlag, München

Downloaded on 22.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101524/html
Scroll to top button