Modelling the onset of oxide formation on metal surfaces from first principles
-
Lucio Colombi Ciacchi
Abstract
The formation of ultrathin oxide layers on metal surfaces is a non-thermally-activated process which takes place spontaneously at very low temperatures within nanoseconds. This paper reports mechanistic details of the initial oxidation of bare metal surfaces, in particular Al(111) and TiN(001), as obtained by means of first-principles molecular dynamics modelling within the Density-Functional Theory. It is shown that the reactions of bare metal surfaces with O molecules take place according to a “hot-atom” dissociative mechanism which is triggered by the filling of the σ* antibonding molecular orbital and is characterised by a sudden release of a large amount of kinetic energy. This released energy provides a driving force for metal/oxygen place-exchange processes which are responsible for the onset of oxide formation at virtually 0 K and at oxygen coverages well below 1 monolayer (ML). Further simulations of the oxidation reactions reveal that a disordered ultrathin oxide forms on Al(111), whereas a rather ordered structure develops on TiN(001) following a selective oxidation process which leaves clusters of Ti vacancies in the TiN lattice underneath the oxide layer.
References
[1] K.R.Lawless: Rep. Prog. Phys.37 (1974) 231.10.1088/0034-4885/37/2/002Suche in Google Scholar
[2] Z.Zhen-Hua, D.Hui-Qiu, L.Wei-Xue, H.Wang-Yu: Acta Phys. Sin.55 (2006) 3157.Suche in Google Scholar
[3] S.Piscanec, L.Colombi Ciacchi, E.Vesselli, G.Comelli, O.Sbaizero, S.Meriani, A.De Vita: Acta Mater.52 (2004) 1237.10.1016/j.actamat.2003.11.020Suche in Google Scholar
[4] G.Jerkiewicz, G.Vatankhah, J.Lessard, M.P.Soriaga, Y.-S.Park: Electrochim. Acta49 (2004) 1451.Suche in Google Scholar
[5] F.B.Diniz, R.R.Ueta: Electrochim. Acta49 (2004) 4281.10.1016/j.electacta.2004.03.036Suche in Google Scholar
[6] F.P.Fehlner, in: Low temperature oxidation, John Wiley and Sons, New York (1986).Suche in Google Scholar
[7] C.L.Muhlstein, E.A.Stach, R.O.Ritchie: Acta Mater.50 (200) 3579.10.1016/S1359-6454(02)00158-1Suche in Google Scholar
[8] E.Fromm, in: Kinetics of metal-gas interactions at low temperatures, Springer-Verlag, Berlin Heidelberg (1998).10.1007/978-3-642-60311-2Suche in Google Scholar
[9] G.Tamann: Z. Anorg. Allgem. Chem.111 (1920) 78.10.1002/zaac.19201110107Suche in Google Scholar
[10] N.Cabrera, N.F.Mott: Rep. Prog. Phys.12 (1948) 163.10.1088/0034-4885/12/1/308Suche in Google Scholar
[11] F.P.Fehlner, N.F.Mott: Oxid. Met.2 (1970) 59.10.1007/BF00603582Suche in Google Scholar
[12] L.P.H.Jeurgens, W.G.Sloof, F.D.Tichelaar, E.J.Mittemeijer: J. Appl. Phys.92 (2002) 1649.10.1063/1.1491591Suche in Google Scholar
[13] F.Reichel, L.P.H.Jeurgens, E.J.Mittemeijer: Phys. Rev. B74 (2006) 144103.10.1103/PhysRevB.74.144103Suche in Google Scholar
[14] E.Lundgren, G.Kresse, C.Klein, M.Borg, J.N.Andersen, M.De Santis, Y.Gauthier, C.Konvicka, M.Schmid, P.Varga: Phys. Rev. Lett.88 (2002) 246103.10.1103/PhysRevLett.88.246103Suche in Google Scholar
[15] R.Benedek, D.N.Seidman, M.Minkoff, L.H.Yang, A.Alavi: Phys. Rev. B60 (1999) 16094.10.1103/PhysRevB.60.16094Suche in Google Scholar
[16] S.Köstlmeier-GemmingC.Elsässer: Phys. Chem. Chem. Phys.3 (2001) 5140.10.1039/b105675cSuche in Google Scholar
[17] M.W.Ruckman, J.Chen, M.Strongin, E.Horache: Phys. Rev. B45 (1992) 14273.10.1103/PhysRevB.45.14273Suche in Google Scholar
[18] F.M.Jacobsen, S.Raaen, M.W.Ruckman, M.Strongin: Phys. Rev. B52 (1995) 11339.10.1103/PhysRevB.52.11339Suche in Google Scholar
[19] M.C.Payne, M.P.Teter, D.C.Allan, T.A.Arias, J.D.Joannopoulos: Rev. Mod. Phys.64 (1992) 1045.10.1103/RevModPhys.64.1045Suche in Google Scholar
[20] J.Hafner: Acta Mater.48 (2000) 71.10.1016/S1359-6454(99)00288-8Suche in Google Scholar
[21] K.Reuter, M.Scheffler: Phys. Rev. Lett.90 (2003) 046103.10.1103/PhysRevLett.90.046103Suche in Google Scholar PubMed
[22] M.W.Finnis, A.Y.Lozovoi, A.Alavi: Ann. Rev. Mater. Res.35 (2005) 167.10.1146/annurev.matsci.35.101503.091652Suche in Google Scholar
[23] T.Campbell, R.K.Kalia, A.Nakano, P.Vashishta, S.Ogata, S.Rodgers: Phys. Rev. Lett.82 (1999) 4866.10.1103/PhysRevLett.82.4866Suche in Google Scholar
[24] P.Vashishta, R.K.Kalia, A.Nakano: J. Phys. Chem. B110 (2006) 3727.10.1021/jp0556153Suche in Google Scholar PubMed
[25] G.Galli, A.Pasquarello, in: M.P.Allen, D.J.Tildesley (Eds.), Computer Simulation in Chemical Physics, Kluwer Academic Publishers, Dordrecht (1993) 261.10.1007/978-94-011-1679-4_8Suche in Google Scholar
[26] D.Marx, J.Hutter, in: J.Grotendorst (Ed.), Modern Methods and Algorithms of Quantum Chemistry, John von Neumann Institute of Computing, Jülich (2000) 301.Suche in Google Scholar
[27] L.Verlet: Phys. Rev.156 (1967) 98.10.1103/PhysRev.159.98Suche in Google Scholar
[28] A.De Vita, A.Canning, G.Galli, F.Gygi, F.Mauri, R.Car: EPFL Supercomput. Rev.6 (1994) 22.Suche in Google Scholar
[29] R.Car, M.Parrinello: Phys. Rev. Lett.55 (1985) 2471.10.1103/PhysRevLett.55.2471Suche in Google Scholar PubMed
[30] J.P.Perdew, Y.Wang: Phys. Rev. B45 (1992) 13244.10.1103/PhysRevB.45.13244Suche in Google Scholar
[31] N.Troullier, J.L.Martins: Phys. Rev. B43 (1991) 1993.10.1103/PhysRevB.43.1993Suche in Google Scholar PubMed
[32] P. E.Blöchl: Phys. Rev. B50 (1994) 17953.10.1103/PhysRevB.50.17953Suche in Google Scholar
[33] J.VandeVondele, A.De Vita: Phys. Rev. B60 (1999) 13241.10.1103/PhysRevB.60.13241Suche in Google Scholar
[34] M.Stengel, A.De Vita: Phys. Rev. B62 (2000) 15283.10.1103/PhysRevB.62.15283Suche in Google Scholar
[35] L.C.Ciacchi, M.C.Payne: Phys. Rev. Lett.92 (2004) 176104.10.1103/PhysRevLett.92.176104Suche in Google Scholar PubMed
[36] L.C.Ciacchi, M.C.Payne: Phys. Rev. Lett.95 (2005) 196101.10.1103/PhysRevLett.95.196101Suche in Google Scholar
[37] A.D.Becke, K.E.Edgecombe: J. Chem. Phys.92 (1990) 5397.10.1063/1.458517Suche in Google Scholar
[38] H.Brune, J.Wintterlin, R.J.Behm, G.Ertl: Phys. Rev. Lett68 (1992) 624.10.1103/PhysRevLett.68.624Suche in Google Scholar
[39] M.Schmid, G.Leonardelli, R.Tscheließnig, A.Biedermann, P.Varga: Surf. Sci.478 (2001) L355.10.1016/S0039-6028(01)00967-0Suche in Google Scholar
[40] A.J.Komrowski, J.Z.Sexton, A.C.Kummel: Phys. Rev. Lett.87 (2001) 246103.10.1103/PhysRevLett.87.246103Suche in Google Scholar PubMed
[41] J.Wintterlin, R.Schuster, G.Ertl: Phys. Rev. Lett.77 (1996) 123.10.1103/PhysRevLett.77.123Suche in Google Scholar PubMed
[42] Y.Yourdshahyan, B.Razaznejad, B.I.Lundqvist: Phys. Rev. B65 (2002) 075416.10.1103/PhysRevB.65.075416Suche in Google Scholar
[43] R.F.W.Bader, in: Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford (1990).Suche in Google Scholar
[44] H.Brune, J.Wintterlin, G.Ertl, J.Wiechers, R.J.Behm: J. Chem. Phys.99 (1993) 2128.10.1063/1.465278Suche in Google Scholar
[45] P.C.Snijders, L.P.H.Jeurgens, W.G.Sloof: Surf. Sci.589 (2005) 98.10.1016/j.susc.2005.05.051Suche in Google Scholar
[46] N.Seriani, W.Pompe, L.C.Ciacchi: J. Phys. Chem. B110 (2006) 14860.10.1021/jp063281rSuche in Google Scholar PubMed
[47] F.Esaka, K.Furuya, H.Shimada, M.Imamura, N.Matsubayashi, H.Sato, A.Nishijima, A.Kawana, H.Ichimura, T.Kikuchi: J. Vac. Sci. Technol. A15 (1997) 2521.10.1116/1.580764Suche in Google Scholar
[48] V.Maurice, G.Despert, S.Zanna, M.-P.Bacos, P.Marcus: Nature Mater.3 (2004) 687.10.1038/nmat1203Suche in Google Scholar
[49] M.Lazzeri, A.Selloni: Phys. Rev. Lett.287 (2001) 266105.10.1103/PhysRevLett.87.266105Suche in Google Scholar
[50] M.Svetina, L.Colombi Ciacchi, O.Sbaizero, S.Meriani, A.De Vita: Acta Mater.49 (2001) 2169.10.1016/S1359-6454(01)00136-7Suche in Google Scholar
[51] N.C.Saha, J.Tompkins: J. Appl. Phys.72 (1992) 3072.10.1063/1.351465Suche in Google Scholar
[52] L.ÖsterlundI.Zorić, B.Kasemo: Phys. Rev. B55 (1997) 15452.Suche in Google Scholar
[53] L.P.H.Jeurgens, W.G.Sloof, F.D.Tichelaar, E.J.Mittemeijer: Phys. Rev. B62 (2000) 4707.10.1103/PhysRevB.62.4707Suche in Google Scholar
[54] L.C.Ciacchi, J.Bagdahn, D.J.Cole, M.C.Payne, P.Gumbsch, submitted for publication.Suche in Google Scholar
© 2007, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- In-situ measurement of local strain partitioning in a commercial dual-phase steel
- Threshold strength and residual stress analysis of zirconia–alumina laminates
- Threshold strength prediction for laminar ceramics from bifurcated crack path simulation
- First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films
- Electric-field induced phase transition in a near-surface layer of a PbMg0.33Nb0.67O3-28% PbTiO3 (001) single-crystalline plate
- Modelling the onset of oxide formation on metal surfaces from first principles
- Applied
- Delamination of stiff islands patterned on stretchable substrates
- Crack formation in surface layers with strain gradients
- Theta-like specimens for measuring mechanical properties at the small-scale: effects of non-ideal loading
- Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime
- Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis
- Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
- Review
- Recent advances in piezospectroscopy
- Notifications
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- In-situ measurement of local strain partitioning in a commercial dual-phase steel
- Threshold strength and residual stress analysis of zirconia–alumina laminates
- Threshold strength prediction for laminar ceramics from bifurcated crack path simulation
- First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films
- Electric-field induced phase transition in a near-surface layer of a PbMg0.33Nb0.67O3-28% PbTiO3 (001) single-crystalline plate
- Modelling the onset of oxide formation on metal surfaces from first principles
- Applied
- Delamination of stiff islands patterned on stretchable substrates
- Crack formation in surface layers with strain gradients
- Theta-like specimens for measuring mechanical properties at the small-scale: effects of non-ideal loading
- Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime
- Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis
- Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
- Review
- Recent advances in piezospectroscopy
- Notifications
- DGM News