Modelling the onset of oxide formation on metal surfaces from first principles
-
Lucio Colombi Ciacchi
Abstract
The formation of ultrathin oxide layers on metal surfaces is a non-thermally-activated process which takes place spontaneously at very low temperatures within nanoseconds. This paper reports mechanistic details of the initial oxidation of bare metal surfaces, in particular Al(111) and TiN(001), as obtained by means of first-principles molecular dynamics modelling within the Density-Functional Theory. It is shown that the reactions of bare metal surfaces with O molecules take place according to a “hot-atom” dissociative mechanism which is triggered by the filling of the σ* antibonding molecular orbital and is characterised by a sudden release of a large amount of kinetic energy. This released energy provides a driving force for metal/oxygen place-exchange processes which are responsible for the onset of oxide formation at virtually 0 K and at oxygen coverages well below 1 monolayer (ML). Further simulations of the oxidation reactions reveal that a disordered ultrathin oxide forms on Al(111), whereas a rather ordered structure develops on TiN(001) following a selective oxidation process which leaves clusters of Ti vacancies in the TiN lattice underneath the oxide layer.
References
[1] K.R.Lawless: Rep. Prog. Phys.37 (1974) 231.10.1088/0034-4885/37/2/002Search in Google Scholar
[2] Z.Zhen-Hua, D.Hui-Qiu, L.Wei-Xue, H.Wang-Yu: Acta Phys. Sin.55 (2006) 3157.Search in Google Scholar
[3] S.Piscanec, L.Colombi Ciacchi, E.Vesselli, G.Comelli, O.Sbaizero, S.Meriani, A.De Vita: Acta Mater.52 (2004) 1237.10.1016/j.actamat.2003.11.020Search in Google Scholar
[4] G.Jerkiewicz, G.Vatankhah, J.Lessard, M.P.Soriaga, Y.-S.Park: Electrochim. Acta49 (2004) 1451.Search in Google Scholar
[5] F.B.Diniz, R.R.Ueta: Electrochim. Acta49 (2004) 4281.10.1016/j.electacta.2004.03.036Search in Google Scholar
[6] F.P.Fehlner, in: Low temperature oxidation, John Wiley and Sons, New York (1986).Search in Google Scholar
[7] C.L.Muhlstein, E.A.Stach, R.O.Ritchie: Acta Mater.50 (200) 3579.10.1016/S1359-6454(02)00158-1Search in Google Scholar
[8] E.Fromm, in: Kinetics of metal-gas interactions at low temperatures, Springer-Verlag, Berlin Heidelberg (1998).10.1007/978-3-642-60311-2Search in Google Scholar
[9] G.Tamann: Z. Anorg. Allgem. Chem.111 (1920) 78.10.1002/zaac.19201110107Search in Google Scholar
[10] N.Cabrera, N.F.Mott: Rep. Prog. Phys.12 (1948) 163.10.1088/0034-4885/12/1/308Search in Google Scholar
[11] F.P.Fehlner, N.F.Mott: Oxid. Met.2 (1970) 59.10.1007/BF00603582Search in Google Scholar
[12] L.P.H.Jeurgens, W.G.Sloof, F.D.Tichelaar, E.J.Mittemeijer: J. Appl. Phys.92 (2002) 1649.10.1063/1.1491591Search in Google Scholar
[13] F.Reichel, L.P.H.Jeurgens, E.J.Mittemeijer: Phys. Rev. B74 (2006) 144103.10.1103/PhysRevB.74.144103Search in Google Scholar
[14] E.Lundgren, G.Kresse, C.Klein, M.Borg, J.N.Andersen, M.De Santis, Y.Gauthier, C.Konvicka, M.Schmid, P.Varga: Phys. Rev. Lett.88 (2002) 246103.10.1103/PhysRevLett.88.246103Search in Google Scholar
[15] R.Benedek, D.N.Seidman, M.Minkoff, L.H.Yang, A.Alavi: Phys. Rev. B60 (1999) 16094.10.1103/PhysRevB.60.16094Search in Google Scholar
[16] S.Köstlmeier-GemmingC.Elsässer: Phys. Chem. Chem. Phys.3 (2001) 5140.10.1039/b105675cSearch in Google Scholar
[17] M.W.Ruckman, J.Chen, M.Strongin, E.Horache: Phys. Rev. B45 (1992) 14273.10.1103/PhysRevB.45.14273Search in Google Scholar
[18] F.M.Jacobsen, S.Raaen, M.W.Ruckman, M.Strongin: Phys. Rev. B52 (1995) 11339.10.1103/PhysRevB.52.11339Search in Google Scholar
[19] M.C.Payne, M.P.Teter, D.C.Allan, T.A.Arias, J.D.Joannopoulos: Rev. Mod. Phys.64 (1992) 1045.10.1103/RevModPhys.64.1045Search in Google Scholar
[20] J.Hafner: Acta Mater.48 (2000) 71.10.1016/S1359-6454(99)00288-8Search in Google Scholar
[21] K.Reuter, M.Scheffler: Phys. Rev. Lett.90 (2003) 046103.10.1103/PhysRevLett.90.046103Search in Google Scholar PubMed
[22] M.W.Finnis, A.Y.Lozovoi, A.Alavi: Ann. Rev. Mater. Res.35 (2005) 167.10.1146/annurev.matsci.35.101503.091652Search in Google Scholar
[23] T.Campbell, R.K.Kalia, A.Nakano, P.Vashishta, S.Ogata, S.Rodgers: Phys. Rev. Lett.82 (1999) 4866.10.1103/PhysRevLett.82.4866Search in Google Scholar
[24] P.Vashishta, R.K.Kalia, A.Nakano: J. Phys. Chem. B110 (2006) 3727.10.1021/jp0556153Search in Google Scholar PubMed
[25] G.Galli, A.Pasquarello, in: M.P.Allen, D.J.Tildesley (Eds.), Computer Simulation in Chemical Physics, Kluwer Academic Publishers, Dordrecht (1993) 261.10.1007/978-94-011-1679-4_8Search in Google Scholar
[26] D.Marx, J.Hutter, in: J.Grotendorst (Ed.), Modern Methods and Algorithms of Quantum Chemistry, John von Neumann Institute of Computing, Jülich (2000) 301.Search in Google Scholar
[27] L.Verlet: Phys. Rev.156 (1967) 98.10.1103/PhysRev.159.98Search in Google Scholar
[28] A.De Vita, A.Canning, G.Galli, F.Gygi, F.Mauri, R.Car: EPFL Supercomput. Rev.6 (1994) 22.Search in Google Scholar
[29] R.Car, M.Parrinello: Phys. Rev. Lett.55 (1985) 2471.10.1103/PhysRevLett.55.2471Search in Google Scholar PubMed
[30] J.P.Perdew, Y.Wang: Phys. Rev. B45 (1992) 13244.10.1103/PhysRevB.45.13244Search in Google Scholar
[31] N.Troullier, J.L.Martins: Phys. Rev. B43 (1991) 1993.10.1103/PhysRevB.43.1993Search in Google Scholar PubMed
[32] P. E.Blöchl: Phys. Rev. B50 (1994) 17953.10.1103/PhysRevB.50.17953Search in Google Scholar
[33] J.VandeVondele, A.De Vita: Phys. Rev. B60 (1999) 13241.10.1103/PhysRevB.60.13241Search in Google Scholar
[34] M.Stengel, A.De Vita: Phys. Rev. B62 (2000) 15283.10.1103/PhysRevB.62.15283Search in Google Scholar
[35] L.C.Ciacchi, M.C.Payne: Phys. Rev. Lett.92 (2004) 176104.10.1103/PhysRevLett.92.176104Search in Google Scholar PubMed
[36] L.C.Ciacchi, M.C.Payne: Phys. Rev. Lett.95 (2005) 196101.10.1103/PhysRevLett.95.196101Search in Google Scholar
[37] A.D.Becke, K.E.Edgecombe: J. Chem. Phys.92 (1990) 5397.10.1063/1.458517Search in Google Scholar
[38] H.Brune, J.Wintterlin, R.J.Behm, G.Ertl: Phys. Rev. Lett68 (1992) 624.10.1103/PhysRevLett.68.624Search in Google Scholar
[39] M.Schmid, G.Leonardelli, R.Tscheließnig, A.Biedermann, P.Varga: Surf. Sci.478 (2001) L355.10.1016/S0039-6028(01)00967-0Search in Google Scholar
[40] A.J.Komrowski, J.Z.Sexton, A.C.Kummel: Phys. Rev. Lett.87 (2001) 246103.10.1103/PhysRevLett.87.246103Search in Google Scholar PubMed
[41] J.Wintterlin, R.Schuster, G.Ertl: Phys. Rev. Lett.77 (1996) 123.10.1103/PhysRevLett.77.123Search in Google Scholar PubMed
[42] Y.Yourdshahyan, B.Razaznejad, B.I.Lundqvist: Phys. Rev. B65 (2002) 075416.10.1103/PhysRevB.65.075416Search in Google Scholar
[43] R.F.W.Bader, in: Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford (1990).Search in Google Scholar
[44] H.Brune, J.Wintterlin, G.Ertl, J.Wiechers, R.J.Behm: J. Chem. Phys.99 (1993) 2128.10.1063/1.465278Search in Google Scholar
[45] P.C.Snijders, L.P.H.Jeurgens, W.G.Sloof: Surf. Sci.589 (2005) 98.10.1016/j.susc.2005.05.051Search in Google Scholar
[46] N.Seriani, W.Pompe, L.C.Ciacchi: J. Phys. Chem. B110 (2006) 14860.10.1021/jp063281rSearch in Google Scholar PubMed
[47] F.Esaka, K.Furuya, H.Shimada, M.Imamura, N.Matsubayashi, H.Sato, A.Nishijima, A.Kawana, H.Ichimura, T.Kikuchi: J. Vac. Sci. Technol. A15 (1997) 2521.10.1116/1.580764Search in Google Scholar
[48] V.Maurice, G.Despert, S.Zanna, M.-P.Bacos, P.Marcus: Nature Mater.3 (2004) 687.10.1038/nmat1203Search in Google Scholar
[49] M.Lazzeri, A.Selloni: Phys. Rev. Lett.287 (2001) 266105.10.1103/PhysRevLett.87.266105Search in Google Scholar
[50] M.Svetina, L.Colombi Ciacchi, O.Sbaizero, S.Meriani, A.De Vita: Acta Mater.49 (2001) 2169.10.1016/S1359-6454(01)00136-7Search in Google Scholar
[51] N.C.Saha, J.Tompkins: J. Appl. Phys.72 (1992) 3072.10.1063/1.351465Search in Google Scholar
[52] L.ÖsterlundI.Zorić, B.Kasemo: Phys. Rev. B55 (1997) 15452.Search in Google Scholar
[53] L.P.H.Jeurgens, W.G.Sloof, F.D.Tichelaar, E.J.Mittemeijer: Phys. Rev. B62 (2000) 4707.10.1103/PhysRevB.62.4707Search in Google Scholar
[54] L.C.Ciacchi, J.Bagdahn, D.J.Cole, M.C.Payne, P.Gumbsch, submitted for publication.Search in Google Scholar
© 2007, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- In-situ measurement of local strain partitioning in a commercial dual-phase steel
- Threshold strength and residual stress analysis of zirconia–alumina laminates
- Threshold strength prediction for laminar ceramics from bifurcated crack path simulation
- First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films
- Electric-field induced phase transition in a near-surface layer of a PbMg0.33Nb0.67O3-28% PbTiO3 (001) single-crystalline plate
- Modelling the onset of oxide formation on metal surfaces from first principles
- Applied
- Delamination of stiff islands patterned on stretchable substrates
- Crack formation in surface layers with strain gradients
- Theta-like specimens for measuring mechanical properties at the small-scale: effects of non-ideal loading
- Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime
- Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis
- Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
- Review
- Recent advances in piezospectroscopy
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- In-situ measurement of local strain partitioning in a commercial dual-phase steel
- Threshold strength and residual stress analysis of zirconia–alumina laminates
- Threshold strength prediction for laminar ceramics from bifurcated crack path simulation
- First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films
- Electric-field induced phase transition in a near-surface layer of a PbMg0.33Nb0.67O3-28% PbTiO3 (001) single-crystalline plate
- Modelling the onset of oxide formation on metal surfaces from first principles
- Applied
- Delamination of stiff islands patterned on stretchable substrates
- Crack formation in surface layers with strain gradients
- Theta-like specimens for measuring mechanical properties at the small-scale: effects of non-ideal loading
- Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime
- Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis
- Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
- Review
- Recent advances in piezospectroscopy
- Notifications
- DGM News