Electric-field induced phase transition in a near-surface layer of a PbMg0.33Nb0.67O3-28% PbTiO3 (001) single-crystalline plate
-
Alexandr A. Levin
, Anja I. Pommrich , Torsten Weißbach , Peter Paufler and Dirk C. Meyer
Abstract
An (001) single-crystal plate of a solid solution of PbMg1/3Nb2/3O3-28 mol.% PbTiO3 was investigated by Wide-Angle X-ray Scattering techniques at room temperature in situ under the influence of an external static electric field (field strength E up to 13 kV cm−1) applied along the [001] direction of the wafer. Structural changes attributed to a reversible phase transition between ferroelectric modifications of the solid solution in a near electrode region of about 1 mm depth are found. Part of the near-electrode layer (of about 5 vol.% at E = 4.5 kV cm−1 and about 15 vol.% at 13 kV cm−1) transforms from the initial rhombohedral structure to another one, most probably, the monoclinic Mb phase. Changes of the profile shape of X-ray rocking curves suggest possible technical use of the electric-field induced phase transition for adaptive X-ray optics.
References
[1] S.-E.Park, T.R.Shrout: J. Appl. Phys.82 (1997) 1804.10.1063/1.365983Search in Google Scholar
[2] Y.Guo, H.Luo, D.Ling, H.Xu, T.He, Z.Yin: J. Phys.-Condens. Mat.15 (2003) L77.10.1088/0953-8984/15/2/110Search in Google Scholar
[3] R.K.Zheng, Y.Wang, J.Wang, K.S.Wong, H.L.W.Chan, C.L.Choy, H.S.Luo: Phys. Rev. B74 (2006) 094427.10.1103/PhysRevB.74.094427Search in Google Scholar
[4] J.-H.Park, B.-K.Kim, K.-H.Song, S.J.Park: Mater. Res. Bull.30 (1995) 435.10.1016/0025-5408(95)00029-1Search in Google Scholar
[5] O.Noblanc, P.Gaucher, G.Calvarin: J. Appl. Phys.79 (1996) 4291.10.1063/1.361865Search in Google Scholar
[6] A.K.Singh, D.Pandey: Phys. Rev. B67 (2003) 064102.10.1103/PhysRevB.67.064102Search in Google Scholar
[7] P.Kumar, S.Singh, O.P.Thakur, C.Prakash, T.C.Goel: Jpn. J. Appl. Phys.43 (2004) 1501.10.1143/JJAP.43.1501Search in Google Scholar
[8] G.Xu, D.Viehland, J.F.Li, P.M.Gehring, G.Shirane: Phys. Rev. B68 (2003) 212410.10.1103/PhysRevB.68.212410Search in Google Scholar
[9] A.K.Singh, D.Pandey: J. Phys.-Condens. Mat.13 (2001) L931.10.1088/0953-8984/13/48/102Search in Google Scholar
[10] P.M.Gehring, W.Chen, Z.-G.Ye, G.Shirane: J. Phys.-Condens. Mat.16 (2004) 7113.10.1088/0953-8984/16/39/042Search in Google Scholar
[11] A.K.Singh, D.Pandey, O.Zaharko: Phys. Rev. B74 (2006) 024101.10.1103/PhysRevB.74.024101Search in Google Scholar
[12] D.Vanderbilt, M.H.Cohen: Phys. Rev. B63 (2001) 094108.10.1103/PhysRevB.63.094108Search in Google Scholar
[13] H.Fu, R.E.Cohen: Nature403 (2000) 281.10.1038/35002022Search in Google Scholar PubMed
[14] J.-M.Kiat, Y.Ueasu, B.Dkhil, M.Matsuda, C.Malibert, G.Calvarin: Phys. Rev. B65 (2002) 064106.10.1103/PhysRevB.65.064106Search in Google Scholar
[15] F.Bai, N.Wang, J.F.Li, D.Viehland, P.M.Gehring, G.Xu, G.Shirane: J. Appl. Phys.96 (2004) 1620.10.1063/1.1766087Search in Google Scholar
[16] B.Noheda, D.E.Cox, G.Shirane, R.Guo, B.Jones, L.E.Cross: Phys. Rev. B63 (2001) 014103.10.1103/PhysRevB.63.014103Search in Google Scholar
[17] B.Noheda, D.E.Cox, G.Shirane, J.Cao, Z.-G.Ye: Phys. Rev. B66 (2002) 054104.10.1103/PhysRevB.66.054104Search in Google Scholar
[18] B.Noheda, D.E.Cox, G.Shirane, S.-E.Park, L.E.Cross, Z.Zhong: Phys. Rev. Lett.86 (2001) 3891.10.1103/PhysRevLett.86.3891Search in Google Scholar PubMed
[19] C.-S.Tu, R.R.Chien, F.-T.Wang, V.H.Schmidt, P.Han: Phys. Rev. B70 (2004) 220103(R).10.1103/PhysRevB.70.220103Search in Google Scholar
[20] A.A.Levin, C.Thiele, P.Paufler, D.C.Meyer: Appl. Phys. A84 (2006) 37.10.1007/s00339-006-3576-2Search in Google Scholar
[21] Programm ANALYZE, Rayflex Version 2.285, Rich. Seifert & Co. (2000).Search in Google Scholar
[22] R.A.Young (Ed.): The Rietveld Method, Oxford University Press (1995).Search in Google Scholar
[23] W.Kraus, G.Nolze: J. Appl. Cryst.29 (1996) 301; Powder Cell for Windows, Version 2.4, freeware available via Homepage of International Union of Crystallography.10.1107/S0021889895014920Search in Google Scholar
[24] G.Xu, H.Hiraka, G.Shirane, K.Ohwada: Appl. Phys. Lett.84 (2004) 3975.10.1063/1.1751216Search in Google Scholar
[25] V. Yu.Topolov: Fizika Tverd. Tela47 (2005) 1298 (in Russian).Search in Google Scholar
[26] D.C.Meyer, A.A.Levin, T.Leisegang, E.Gutmann, P.Paufler, M.Reibold, W.Pompe: Appl. Phys. A84 (2006) 31.10.1007/s00339-006-3584-2Search in Google Scholar
[27] C.S.Tu, V.H.Schmidt, I.-C.Shih, R.Chien: Phys. Rev. B67 (2003) 020102(R).10.1103/PhysRevB.67.020102Search in Google Scholar
[28] C.S.Tu, I.-C.Shih, V.H.Schmidt, R.Chien: Appl. Phys. Lett.83 (2003) 1833.10.1063/1.1602558Search in Google Scholar
[29] L.S.Kamzina, E.V.Snetkova, I.P.Raevskii, A.S.Emel9yanova, J.Xu, W.Xiang: Fizika Tverd. Tela49 (2007) 725 (in Russian).Search in Google Scholar
[30] S.Kawamura, J.H.Kaneko, H.Fujimoto, Y.Otake, F.Fujita, A.Homma, T.Sawamura, P.Mikula, M.Furusaka: Phys. B385–386 (2006) 1277.Search in Google Scholar
© 2007, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- In-situ measurement of local strain partitioning in a commercial dual-phase steel
- Threshold strength and residual stress analysis of zirconia–alumina laminates
- Threshold strength prediction for laminar ceramics from bifurcated crack path simulation
- First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films
- Electric-field induced phase transition in a near-surface layer of a PbMg0.33Nb0.67O3-28% PbTiO3 (001) single-crystalline plate
- Modelling the onset of oxide formation on metal surfaces from first principles
- Applied
- Delamination of stiff islands patterned on stretchable substrates
- Crack formation in surface layers with strain gradients
- Theta-like specimens for measuring mechanical properties at the small-scale: effects of non-ideal loading
- Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime
- Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis
- Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
- Review
- Recent advances in piezospectroscopy
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- In-situ measurement of local strain partitioning in a commercial dual-phase steel
- Threshold strength and residual stress analysis of zirconia–alumina laminates
- Threshold strength prediction for laminar ceramics from bifurcated crack path simulation
- First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films
- Electric-field induced phase transition in a near-surface layer of a PbMg0.33Nb0.67O3-28% PbTiO3 (001) single-crystalline plate
- Modelling the onset of oxide formation on metal surfaces from first principles
- Applied
- Delamination of stiff islands patterned on stretchable substrates
- Crack formation in surface layers with strain gradients
- Theta-like specimens for measuring mechanical properties at the small-scale: effects of non-ideal loading
- Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime
- Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis
- Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
- Review
- Recent advances in piezospectroscopy
- Notifications
- DGM News