Startseite Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes

Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth
  • Zaklina Burghard , Davina Schön , Peter Garstel , Joachim Bill und Fritz Aldinger
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nanocomposites made of polymer-derived Si–C–N ceramic reinforced by single-wall carbon nanotubes (SWCNTs) were prepared for the first time. The synthesis procedure involved ultrasonic dispersion of the nanotubes into a liquid polysilazane precursor polymer, followed by cross-linking and thermolysis. With the aid of nanoindentation testing, dependence of the mechanical properties of the composites on the concentration and agglomeration state of SWCNTs, was studied. The nanotube-filled composites showed improved mechanical performance, as reflected by an increase in Young's modulus which was found to be correlated with the microstructure of the composites, in particular the degree of dispersion of the nanotubes inside the matrix, whereas the hardness is hardly affected.


* Correspondence address, Dr. Zaklina Burghard, Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Heisenbergstr. 3, D-70569 Stuttgart, Germany, Tel.: +49 711 689 3226, Fax: +49 711 689 3131. E-mail:

Refrences

[1] M.M.J.Treacy, T.W.Ebbesen, J.M.Gibson: Nature381 (1996) 678.10.1038/381678a0Suche in Google Scholar

[2] E.W.Wong, P.E.Sheehan, C.M.Lieber: Science277 (1997) 1971.10.1126/science.277.5334.1971Suche in Google Scholar

[3] A.Krishnan, E.Dujardin, T.W.Ebbesen, P.N.Yianilos, M.M.J.Treacy: Phys. Rev.B58 (1998) 14013.Suche in Google Scholar

[4] M.F.Yu, B.S.Files, S.Arepalli, R.S.Ruoff: Phys. Rev. Lett.84 (2000) 5552.10.1103/PhysRevLett.84.5552Suche in Google Scholar

[5] K.Anazawa, K.Shimotani, C.Manabe, H.Wanatabe, M.Shimizu: App. Phys. Lett.81 (2002) 739.10.1063/1.1491302Suche in Google Scholar

[6] S.Berber, Y.K.Kwon, D.Tomanek: Phys. Rev. Lett.84 (2000) 4613.10.1103/PhysRevLett.84.4613Suche in Google Scholar

[7] J.Sun, L.Gao, W.Li: Chem. Mater.14 (2002) 5169.10.1021/cm020736qSuche in Google Scholar

[8] T.Seeger, T.Kohler, T.Frauenheim, N.Grobert, M.Ruhle, M.Terrones, G.Seifert: Chem. Commun. (2002) 34.10.1039/b109441fSuche in Google Scholar

[9] P.Vincent, A.Brioude, C.Journet, S.Rabaste, S.T.Purcell, J.Le Brusq, J.C.Plenet: J. Non-Crystalline Solids311 (2002) 130.10.1016/S0022-3093(02)01371-6Suche in Google Scholar

[10] C.Laurent, A.Peigney, O.Dumortier, A.Rousset: J. Euro. Ceram. Soc.18 (1998) 2005.10.1016/S0955-2219(98)00142-3Suche in Google Scholar

[11] A.Peignei: Nature Materials2 (2003) 15.10.1038/nmat794Suche in Google Scholar PubMed

[12] G.D.Zhan, J.D.Kuntz, J.L.Wan, A.K.Mukherjee: Nature Materials2 (2003) 38.10.1038/nmat793Suche in Google Scholar

[13] R.Z.Ma, J.Wu, B.Q.Wei, J.Liang, D.H.Wu: J. Mater. Sci.33 (1998) 5243.10.1023/A:1004492106337Suche in Google Scholar

[14] L.N.An, W.X.Xu, S.Rajagopalan, C.M.Wang, H.Wang, Y.Fan, L.G.Zhang, D.P.Jiang, J.Kapat, L.Chow, B.H.Guo, J.Liang, R.Vaidyanathan: Adv. Mater.16 (2004) 2036.10.1002/adma.200306241Suche in Google Scholar

[15] Y.Katsuda, P.Gerstel, J.Narayanan, J.Bill, F.Aldinger: J. Euro. Ceram. Soc. in print.Suche in Google Scholar

[16] J.Bill, F.Aldinger: Adv. Mater.7 (1995) 775.10.1002/adma.19950070903Suche in Google Scholar

[17] G.Thurn, J.Canel, J.Bill, F.Aldinger: J. Euro. Ceram. Soc.19 (1999) 2317.10.1016/S0955-2219(99)00093-XSuche in Google Scholar

[18] R.Raj, L.An, S.Shah: J. Am. Ceram. Soc.84 (2001) 1803.10.1111/j.1151-2916.2001.tb00918.xSuche in Google Scholar

[19] J.Lu, W.Xu, J.Han: Int. J. High speed Electron. Sys.9 (1998) 101.10.1142/S0129156498000063Suche in Google Scholar

[20] M.F.Doerner, W.D.Nix: J. Mater. Res.1 (1986) 601.10.1557/JMR.1986.0601Suche in Google Scholar

[21] W.C.Oliver, G.M.Pharr: J. Mater. Res.7 (1992) 1564.10.1557/JMR.1992.1564Suche in Google Scholar

[22] B.Bhushan, X.Li: Int. Mater. Rev.48 (2003) 125.10.1179/095066003225010227Suche in Google Scholar

[23] Z.Burghard: PhD thesis, University of Stuttgart, Stuttgart (2004).Suche in Google Scholar

[24] X.Y.Gong, J.Liu, S.Baskaran, R.D.Voise, J.S.Young: Chem. Mater.12 (2000) 1049.10.1021/cm9906396Suche in Google Scholar

[25] X.T.Wang, N.P.Padture, H.Tanaka: Nature3 (2004), 539.10.1038/nmat1161Suche in Google Scholar

[26] W.D.Nix: Mater. Sci. Eng. A237 (1997) 37.10.1016/S0921-5093(97)00176-7Suche in Google Scholar

[27] M.Burghard: Surface Science Reports58 (2005) 1.10.1002/smll.200500257Suche in Google Scholar

[28] H.Miyagawa, A.K.Mohanty, L.T.Drzal, M.Misra: Nanotechnology16 (2005) 118.10.1088/0957-4484/16/1/024Suche in Google Scholar

[29] F.H.Gojny, J.Nastalczyk, Z.Roslaniec, K.Schulte: Chem. Phys. Lett.370 (2003) 820.10.1016/S0009-2614(03)00187-8Suche in Google Scholar

Received: 2006-5-10
Accepted: 2006-8-8
Published Online: 2013-05-31
Published in Print: 2006-12-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Basic
  4. Microcracks in superalloys: From local in-situ measurements to lifetime prediction
  5. Residual stress development due to thermal cycling of the particle-reinforced alloy EN AW-6061– experiment and simulation
  6. Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
  7. The nature of the TRIP-effect in metastable austenitic steels
  8. Investigation and modelling of theplasticity-induced martensite formation in metastable austenites
  9. Thermal relaxation of residual stresses in TiN films deposited by arc ion plating
  10. On the Hall–Petch relation between flow stress and grain size
  11. Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
  12. Applied
  13. Strengthening of silicon nitride ceramics by shot peening
  14. Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
  15. New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires
  16. Anwendung des lokalen Dauerfestigkeitskonzepts zur Bewertung der Wirksamkeit von Schweißnahtnachbehandlungsmaßnahmen
  17. Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
  18. Effect of surface roughening on increasingthe spectral selectivity of cermet solarselective absorbers
  19. Experimental observations on thecorrelation between microstructure andfracture of multiphase steels
  20. Pressure solidification – a novel moulding technique for plastic parts with superior dimensional stability
  21. DGM News
  22. DGM News
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101399/pdf
Button zum nach oben scrollen