Simulations of RUTA-70 reactor with CERMET fuel using DYN3D/ATHLET and DYN3D/RELAP5 coupled codes
-
Y. Kozmenkov
, U. Rohde , Y. Baranaev and A. Glebov
Abstract
RUTA-70 model for simulations with the internally coupled codes DYN3D/ATHLET and DYN3D/RELAP5 was developed. A 3-D power distribution in the core is calculated by DYN3D with thermal-hydraulic feedback from the system codes. A steady-state corresponding to the full reactor power and an accident scenario initiated by failure of all primary coolant pumps were simulated with the DYN3D/ATHLET and DYN3D/RELAP5 coupled code systems to verify these codes. The compared coupled codes give close predictions for the initial and final states of the simulated accident but not for the transition between them. The observed deviations are explained by differences in the subcooled boiling models of the employed versions of ATHLET and RELAP5. Nevertheless, both simulations confirm a high level of the reactor inherent safety. The allowed safety margins were not reached.
Kurzfassung
Für die gekoppelten Programmsysteme DYN3D/ATHLET und DYN3D/RELAP5 wurden Modelle zur Berechnung des RUTA-70 Reaktors entwickelt. Die 3D Leistungsverteilung im Kern wird dabei von DYN3D berechnet und die thermohydraulische Rückkopplung mit den jeweiligen Systemcodes ATHLET bzw. RELAP5. Die ersten Berechnungen zur Verifizierung dieser Modelle werden im Beitrag vorgestellt. Dazu wurde einen Rechnung zum stationären Voll-lastbetrieb und eine Rechnung zu einem Störfall ausgelöst durch den Ausfall aller Primärkreiskühlmittelpumpen durchgeführt. Dabei zeigte ein Vergleich der Rechenergebnisse eine gute Übereinstimmung beider Programmsysteme bei der Bestimmung des Anfangs- und Endzustands des Ereignisses, jedoch nicht für die Transiente selbst. Dabei wurden jedoch die erlaubten Sicherheitsmargen nicht erreicht. Die Unterschiede werden auf die in den Systemcodes enthaltenen unterschiedlichen Modelle zur Berechnung des unterkühlten Siedens zurückgeführt.
References
1 Adamov, E. O.; Romenkov, A. A.: The Apatity nuclear heating plant project: modern technical and economic issues of nuclear heat appli-cation in Russia. IAEA-TECDOC-1056: Nuclear heat applications: design aspects and operating experience, November 1998Search in Google Scholar
2 Poplavskiy, V. M.; Baranaev, Yu, D.; et al.: Feasibility Study on Deployment of the First Unit of RUTA-70 Reactor in Obninsk: Dis-trict Heating, Technological, and Medical Applications, presented at the IAEA International Conference on Non-Electric Applications of Nuclear Power: Seawater Desalination, Hydrogen Production and other Industrial Applications, 16–19 April 2007, Oarai, JapanSearch in Google Scholar
3 Romenkov, A.: Practical Application of the RUTA Safe Pool-type Nuclear Reactor to Demonstrate the Advantages of Atomic Energy Use. Proceedings of the International Symposium on the Peaceful Applications of Nuclear Technology in the GCC Countries, Jeddah 200810.1504/IJND.2009.028867Search in Google Scholar
4 Fuel Review: Fuel Design Data, Nuclear Engineering International, September 2004Search in Google Scholar
5 Kozmenkov, Y; Orekhov, Y; Grundmann, U.; Kliem, S.; Rohde, U.; Seidel, A.: Development and Benchmarking of the DYN3D/RELAP5 Code System, Proceedings of Annular Meeting on Nucle-ar Technology, Dresden, Germany, 15–17 May, 2001, pp. 15–18Search in Google Scholar
6 Grundmann, U.; Lucas, D.; Rohde, U.: Coupling of the Thermo-hydraulic Code ATHLET with the Neutron Kinetic Core Model DYN3D. Int. Conf. on Mathematics and Computations, Physics and Environmental Analysis, Portland, Oregon (USA), April 30 -May 5 1995, Proc. Vol. 1, pp. 257–263Search in Google Scholar
7 Austregesilo, H.; et al.: ATHLET Mod 2.1 Cycle A. Models and Methods, GRS – P – 1 / Vol. 4, July 2006Search in Google Scholar
8 NUREG/CR-5535/Rev 1, RELAP5/MOD3.3 code manual. Vol-ume I: Code Structure, System Models, and Solution Methods, De-cember 2001. Idaho Falls, IdahoSearch in Google Scholar
9 Grundmann, U.; Rohde, U.; Mittag, S.: DYN3D – Three Dimensional Core Model for Steady-State and Transient Analysis of Ther-mal Reactors. Proceedings of the 2000 ANS International Topical Meeting on Advances in Reactor Physics and Mathematics and Computation into the Next Millennium (PHYSOR 2000), Pitts-burgh (USA), May, 7–11, 2000Search in Google Scholar
10 Chen, J. C: Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow. Ind. Eng. Chem. Process Des. Dev.5 (1966) 322–32910.1021/i260019a023Search in Google Scholar
11 Hainoun, A.; et al.: Modelling of Void Formation in the Subcooled Boiling Regime in the ATHLET Code to Simulate Flow Instability for Research Reactors. Nuclear Engineering and Design167 (1996) 175–19110.1016/S0029-5493(96)01233-2Search in Google Scholar
12 Lahey, R. T.: A Mechanistic Subcooled Boiling Model. Proceedings of the 6th International Heat Transfer Conference, vol. 1, Toronto, Canada, 1, 1978, p. 29310.1615/IHTC6.600Search in Google Scholar
13 Saha, P.; Zuber, N.: Point of Net Vapor Generation and Void Fraction in Subcooled Boiling. Proceedings of the 5th International Heat Transfer Conference, Paper B 4.7, Tokyo, 197410.1615/IHTC5.430Search in Google Scholar
14 ATHLET Mod. 2.2 Cycle A. Program Updates since Mod. 2.1 Cycle A, GRS, July 2009Search in Google Scholar
15 Austregesilo, H.; et al.: ATHLET Mod 2.2 Cycle A. Input Data De-scription, GRS – P – 1 / Vol. 4, July 2009Search in Google Scholar
16 Koncar, B.; Mavko, B.: Modelling of Low-pressure Subcooled Flow Boiling Using the RELAP5 Code, Nuclear Engineering and Design220(2003)255–27310.1016/S0029-5493(02)00385-0Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries/Kurzfassungen
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – Selected contributions to the XXIst Symposium of the Atomic Energy Research organization
- Technical Contributions/Fachbeiträge
- Development of multi-group spectral code TVS-M
- Qualification of the APOLLO2 lattice physics code of the NURISP platform for VVER hexagonal lattices
- The simplified P3 approach on a trigonal geometry of the nodal reactor code DYN3D
- An analytical solution for the consideration of the effect of adjacent fuel assemblies; extension to VVER-440 type fuel assemblies
- Studies on boiling water reactor design with reduced moderation and analysis of reactivity accidents using the code DYN3D-MG
- Simulations of RUTA-70 reactor with CERMET fuel using DYN3D/ATHLET and DYN3D/RELAP5 coupled codes
- Analysis of coolant flow in central tube of VVER-440 fuel assemblies
- Effect of spacer grid mixing vanes on coolant outlet temperature distribution
- Study on severe accidents and countermeasures for VVER-1000 reactors using the integral code ASTEC
- Assessment of spectral history influence on PWR and WWER core
- New practice for the evaluation of rod efficiency measurement by rod drop at the NPP Paks
- Comparison of square and hexagonal fuel lattices for high conversion PWRs
- VVER-440 with inert matrix fuel – viable direction to sustainability
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries/Kurzfassungen
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – Selected contributions to the XXIst Symposium of the Atomic Energy Research organization
- Technical Contributions/Fachbeiträge
- Development of multi-group spectral code TVS-M
- Qualification of the APOLLO2 lattice physics code of the NURISP platform for VVER hexagonal lattices
- The simplified P3 approach on a trigonal geometry of the nodal reactor code DYN3D
- An analytical solution for the consideration of the effect of adjacent fuel assemblies; extension to VVER-440 type fuel assemblies
- Studies on boiling water reactor design with reduced moderation and analysis of reactivity accidents using the code DYN3D-MG
- Simulations of RUTA-70 reactor with CERMET fuel using DYN3D/ATHLET and DYN3D/RELAP5 coupled codes
- Analysis of coolant flow in central tube of VVER-440 fuel assemblies
- Effect of spacer grid mixing vanes on coolant outlet temperature distribution
- Study on severe accidents and countermeasures for VVER-1000 reactors using the integral code ASTEC
- Assessment of spectral history influence on PWR and WWER core
- New practice for the evaluation of rod efficiency measurement by rod drop at the NPP Paks
- Comparison of square and hexagonal fuel lattices for high conversion PWRs
- VVER-440 with inert matrix fuel – viable direction to sustainability