Home Technology The simplified P3 approach on a trigonal geometry of the nodal reactor code DYN3D
Article
Licensed
Unlicensed Requires Authentication

The simplified P3 approach on a trigonal geometry of the nodal reactor code DYN3D

  • S. Duerigen and E. Fridman
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

DYN3D is a three-dimensional nodal code for steady-state and transient analyses of Light Water Reactors applicable for square and hexagonal fuel assembly geometries. Several versions of the DYN3D code are available including a multigroup diffusion and a simplified P3 (SP3) neutron transport option. The multi-group SP3 method based on a trigonal geometry was developed recently. This method is applicable to the analysis of reactor cores with hexagonal fuel assemblies and allows flexible mesh refinement. In this paper, the theoretical background for the SP3 method is briefly described. The consistency of the implementation of the trigonal SP3 methodology in DYN3D is demonstrated by means of a simplified VVER-440 core test example. The corresponding few-group homogenized cross sections and reference solutions were produced by the Monte Carlo code Serpent. The DYN3D results are in good agreement with the reference solutions.

Kurzfassung

DYN3D ist ein dreidimensionaler, nodaler Code für stationäre und transiente Leichtwasserreaktorenberechnungen. DYN3D steht für Reaktortypen mit rechteckiger und hexagonaler Brennelementgeometrie zur Verfügung und besitzt sowohl einen Mehrgruppendiffusions- als auch einen vereinfachten Neutronentransportgleichungslöser (SP3-Verfahren). Die Mehrgruppen-SP3-Methode basierend auf trigonaler Nodalisierung wurde kürzlich entwickelt. Dieses Verfahren findet seine Anwendung bei der Analyse von Reaktoren mit hexagonaler Brennelementstruktur und verfügt über die Eigenschaft der flexiblen Netzverfeinerung. Dieser Artikel umreiβt die Theorie der trigonalen SP3-Methode kurz und zeigt die Ergebnisse einer ersten Verifikationsstudie anhand eines vereinfachten VVER-440-Testbeispiels. Die benötigten Wirkungsquerschnittsdaten sowie die Referenzlösungen wurden mit dem Monte-Carlo-Code Serpent erzeugt. Es wird gezeigt, dass die DYN3D-SP3-Resultate in guter Übereinstimmung mit den Referenzlösungen liegen.


* Email:

References

1 Grundmann, U.; Rohde, U.: DYN3D – A 3-dimensional core model for steady state and transient analysis in thermal reactors. In Pro-ceedings of PHYSOR 1996 – the International Conference on the Physics of Reactors, Mito, Japan, September 16–20 1996, Atomic Energy Society of JapanSearch in Google Scholar

2 Grundmann, U.; Rohde, U.;Mittag, S.: DYN3D-Three-dimensional core model for steady-state and transient analysis of thermal reac-tors. In Proceedings of PHYSOR 2000 – Advances in Reactor Phy-sics and Mathematics and Computations into the Next Millennium, Pittsburgh, USA, May 7–11 2000Search in Google Scholar

3 Beckert, C; Grundmann, U.: Development and verification of a no-dal approach for solving the multigroup SP3 equations. Annals of Nuclear Energy35 (2008) 7510.1016/j.anucene.2007.05.014Search in Google Scholar

4 Duerigen, S.; Grundmann, U.; Mittag, S.; Merk, B.; Fridman, E.; Kliem, S.: A trigonal nodal solution approach to the multi-group simplified P3 equations in the reactor code DYN3D. In Proceedings of M&C 2011 – the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Rio de Janeiro, Brazil, May 8–12 201110.1299/jsmeicone.2011.19._ICONE1944_26Search in Google Scholar

5 Duerigen, S.; Bilodid, Y.; Fridman, E.A trigonal nodal SP3 method with mesh refinement capabilities – development and verification. In Proceedings of PHYSOR 2012 – Advances in Reactor Physics, Knoxville, Tennessee, USA, April 15–20 2012Search in Google Scholar

6 McClarren, R. G.: Theoretical aspects of the simplified Pn equations, Transport Theory and Statistical Physics39 (2011) 7310.1080/00411450.2010.535088Search in Google Scholar

7 Gelbard, E. M.: Application of spherical harmonics method to reac-tor problems. Tech. Report WAPD-BT-20, Bettis Atomic Power Laboratory, 1960Search in Google Scholar

8 Larsen, E. W.; Morel, J. E.; McGhee, J. M.: Asymptotic derivation of the multigroup PI and simplified PN equations with anisotropic scattering, Nuclear Science and Engineering123 (1996) 328Search in Google Scholar

9 Pomraning, G. C.: Asymptotic and variational derivations of the simplified PN equations, Annals of Nuclear Energy20 (1993) 62310.1016/0306-4549(93)90030-SSearch in Google Scholar

10 Bell, G. L.; Glasstone, S.: Nuclear Reactor Theory, Van Nostrand Re-inhold Company, 1970Search in Google Scholar

11 Tomasevic, D.; Larsen, E. W.: Variational derivation of simplified P2 equations with boundary conditions, Transactions of the American Nuclear Society70 (1994) 159Search in Google Scholar

12 Brantley, P. S.; Larsen, E.W.: The simplified P3 approximation, Nu-clear Science and Engineering134 (2000) 1Search in Google Scholar

13 Leppanen, J.: Development of a New Monte Carlo Reactor Physics Code. PhD thesis, Helsinki University of Technology 2007Search in Google Scholar

14 Fridman, E.; Leppanen, J.: On the use of the Serpent Monte Carlo code for few-group cross section generation. Annals of Nuclear Energy38 (2011) 139910.1016/j.anucene.2011.01.032Search in Google Scholar

Received: 2012-1-13
Published Online: 2013-06-11
Published in Print: 2012-08-01

© 2012, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110247/html
Scroll to top button