An analytical solution for the consideration of the effect of adjacent fuel assemblies; extension to VVER-440 type fuel assemblies
-
B. Merk
and U. Rohde
Abstract
A new analytical method is described to deal with the Leakage Environmental Effect for the cross section production. The method is based on the one dimensional analytical solution of the two-group diffusion equation for two adjacent, homogenized fuel assemblies. The high quality of the results for this highly efficient method is demonstrated for square fuel assemblies. In additional tests the limiting case for the transferability of the concept to the small hexagonal VVER-440 type fuel assemblies is shown.
Kurzfassung
Eine neue Methode zur Berücksichtigung des Einflusses benachbarter Brennelemente („Leakage Environmental Effect“) auf die Wirkungsquerschnittsbereitung mit Hilfe analytischer Lösungen wird beschreiben. Die Methode basiert auf analytischen Lösungen für die eindimensionale Zweigruppen-Diffusionsgleichung für zwei benachbarte, homogenisierte Brennelemente. Die hohe Qualität der Ergebnisse für diese hocheffiziente Methode wird für quadratische Brennelemente demonstriert. In weiteren Tests wird der Grenzfall für die Übertragbarkeit des Konzepts auf, für VVER-440 Reaktoren typische, relativ kleine, sechseckige Brennelemente gezeigt.
References
1 Doming, J.: Modern coarse-mesh methods – a development of the '70s. Conf. on Computational Meth. in Nuclear Engineering, Wa-shington (1979)Search in Google Scholar
2 Lawrence, R. D.: Progress in nodal methods for the solution of the neutron diffusion and transport equation. Prog, in Nuclear Energy17 (1986) 217Search in Google Scholar
3 Koebke, K.: A new approach to homogenization and group conden-sation. In: IAEA-TECDOC, Vol. 231, International Atomic Energy Agency, p.303 (1978)Search in Google Scholar
4 Smith, K. S.: Spatial homogenization methods for light water reac-tor analysis. PhD thesis, MIT (1980)Search in Google Scholar
5 Smith, K. S.: Assembly homogenization techniques for light water reactor analysis. Prog. Nucl. Energy17 (1978) 30310.1016/0149-1970(86)90035-1Search in Google Scholar
6 Kavenoky, A.: The SPH homogenization method. In: IAEA-TEC-DOC, Vol. 231, International Atomic Energy Agency, p. 181Search in Google Scholar
7 Hebert, A.; Benoist, P.: A consitent technique for the global homo-genization of a pressurized water reactor assembly. Nuclear Science and Engineering109 (1991) 360Search in Google Scholar
8 Hebert, A.; Mathonniere, G: Development of a third-generation Superhomogeneisation method for the homogenization of a pres-surized water reactor assembly. Nuclear Science and Engineering115 (1993) 129Search in Google Scholar
9 Chiang, R. T.; Doming, J. J.: A homogenization theory for lattices with burnup and non uniform loadings. Adv. in Reactor Physics and Shielding Cala, La Grange Park (1980)Search in Google Scholar
10 Zhang, H; Ruzwan-uddin; Doming, J. J.: Systematic homogenization and self-consitent flux and pin power reconstruction for nodal diffusion methods – I: diffusion equation-base theory. Nuclear Science and Engineering121 (1995) 226Search in Google Scholar
11 Zhang, H.; Doming, J. J.: A multiple-scales systematic theory for the simultaneous homogenization of lattice cells and fuel assemblies. Transport Theory and Statistical Physics26 (1997) 76510.1080/00411459708224422Search in Google Scholar
12 Aragonés, J. M.; Ahnert, C.: A linear discontinuous finite-difference formulation for synthetic coarse-mesh few-group diffusion calculations. Nucl. Sei. Eng.94 (1986) 30910.1016/0029-5493(86)90013-0Search in Google Scholar
13 Rahnema, F.: Boundary condition perturbation theory for use in spa-tial homogenization methods, Nucl. Sei. Eng.102 (1989) 183–190Search in Google Scholar
14 Smith, K. S.: Practical and efficient iterative method for LWR fuel assembly homogenization. Trans. Am. Nucl. Soc.71 (1994) 238Search in Google Scholar
15 Clarno, K. T.; Adams, M. L.: Capturing the effect of unlike neigh-bors in a single-assembly calculation. Nuclear Science and Engi-neering149 (2005) 182Search in Google Scholar
16 Laletin, N. L.: Analysis of the Surface Pseudosources Method (G-Approximations) and Comparison with Other Numerical Methods for the Neutron Transport Equation. Transport Theory and Statisti-cal Physics27 (1998) 639–65210.1080/00411459808205647Search in Google Scholar
17 Laletin, N. I.; Sultanov, N. V; Kovalishin, A. A.: Analysis and LWR Physics Benchmark Problems by SH and SPS Methods. M&C Topi-cal Meeting 2001, Salt Lake City, USA (2001)Search in Google Scholar
18 Grundmann, U.; Rohde, U.; Mittag, S.: DYN3D – three dimensional core model for steady-state and transient analysis of thermal reac-tors. Proc. PHYSOR 2000, Pittsburgh, Pennsylvania, USA.Search in Google Scholar
19 HELIOS Methods, Studsvik Scandpower (2003)Search in Google Scholar
20 Kozlowski, T.; Downar, T. J.: OECD/NEA and U.S. NRC PWR MOX/U02 core transient benchmark. OECD Nuclear Energy Agency Nuclear Science Committee, http://www.nea.fr/science/wprs/MOX-UOX-transients/benchmark_documents/specifications/mox_bench_spec.pdfSearch in Google Scholar
21 Grundmann, U.; Rohde, U.: The Code DYN3D/M2 for the Calculation of Reactivity Initiated Transients in Light Water Reactors with Hexagonal Fuel Elements – Code Manual and Input Data Description. FSS-2/92 (March 1992).Search in Google Scholar
22 DYN3D/M2, Reactivity Transients in Light H210 Reactors with Hexagonal Geometry, NEA Databank NEA-1411/01, http://www.oecd-nea.org/tools/abstract/detail/nea-1411/Search in Google Scholar
23 Bajgl, J.: Progress at the 5-year fuel cycle strategy implementation at Dukovany NPR 20-th Symposium of AER, 20.-24. 9. 2010, Hana-saari, FinlandSearch in Google Scholar
24 Merk, B.; Rohde, U.: An analytical solution for the consideration of the effect of adjacent fuel elements. Annals of Nuclear Energy38 (2011) 2374–238510.1016/j.anucene.2011.07.005Search in Google Scholar
25 Merk, B.; Rohde, U.: An analytical solution for the consideration of the effect of adjacent fuel elements. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011), 08.-12. 05. 2011, Rio de Ja-neiro, BrazilSearch in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries/Kurzfassungen
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – Selected contributions to the XXIst Symposium of the Atomic Energy Research organization
- Technical Contributions/Fachbeiträge
- Development of multi-group spectral code TVS-M
- Qualification of the APOLLO2 lattice physics code of the NURISP platform for VVER hexagonal lattices
- The simplified P3 approach on a trigonal geometry of the nodal reactor code DYN3D
- An analytical solution for the consideration of the effect of adjacent fuel assemblies; extension to VVER-440 type fuel assemblies
- Studies on boiling water reactor design with reduced moderation and analysis of reactivity accidents using the code DYN3D-MG
- Simulations of RUTA-70 reactor with CERMET fuel using DYN3D/ATHLET and DYN3D/RELAP5 coupled codes
- Analysis of coolant flow in central tube of VVER-440 fuel assemblies
- Effect of spacer grid mixing vanes on coolant outlet temperature distribution
- Study on severe accidents and countermeasures for VVER-1000 reactors using the integral code ASTEC
- Assessment of spectral history influence on PWR and WWER core
- New practice for the evaluation of rod efficiency measurement by rod drop at the NPP Paks
- Comparison of square and hexagonal fuel lattices for high conversion PWRs
- VVER-440 with inert matrix fuel – viable direction to sustainability
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries/Kurzfassungen
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – Selected contributions to the XXIst Symposium of the Atomic Energy Research organization
- Technical Contributions/Fachbeiträge
- Development of multi-group spectral code TVS-M
- Qualification of the APOLLO2 lattice physics code of the NURISP platform for VVER hexagonal lattices
- The simplified P3 approach on a trigonal geometry of the nodal reactor code DYN3D
- An analytical solution for the consideration of the effect of adjacent fuel assemblies; extension to VVER-440 type fuel assemblies
- Studies on boiling water reactor design with reduced moderation and analysis of reactivity accidents using the code DYN3D-MG
- Simulations of RUTA-70 reactor with CERMET fuel using DYN3D/ATHLET and DYN3D/RELAP5 coupled codes
- Analysis of coolant flow in central tube of VVER-440 fuel assemblies
- Effect of spacer grid mixing vanes on coolant outlet temperature distribution
- Study on severe accidents and countermeasures for VVER-1000 reactors using the integral code ASTEC
- Assessment of spectral history influence on PWR and WWER core
- New practice for the evaluation of rod efficiency measurement by rod drop at the NPP Paks
- Comparison of square and hexagonal fuel lattices for high conversion PWRs
- VVER-440 with inert matrix fuel – viable direction to sustainability