Home Technology An analytical solution for the consideration of the effect of adjacent fuel assemblies; extension to VVER-440 type fuel assemblies
Article
Licensed
Unlicensed Requires Authentication

An analytical solution for the consideration of the effect of adjacent fuel assemblies; extension to VVER-440 type fuel assemblies

  • B. Merk and U. Rohde
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

A new analytical method is described to deal with the Leakage Environmental Effect for the cross section production. The method is based on the one dimensional analytical solution of the two-group diffusion equation for two adjacent, homogenized fuel assemblies. The high quality of the results for this highly efficient method is demonstrated for square fuel assemblies. In additional tests the limiting case for the transferability of the concept to the small hexagonal VVER-440 type fuel assemblies is shown.

Kurzfassung

Eine neue Methode zur Berücksichtigung des Einflusses benachbarter Brennelemente („Leakage Environmental Effect“) auf die Wirkungsquerschnittsbereitung mit Hilfe analytischer Lösungen wird beschreiben. Die Methode basiert auf analytischen Lösungen für die eindimensionale Zweigruppen-Diffusionsgleichung für zwei benachbarte, homogenisierte Brennelemente. Die hohe Qualität der Ergebnisse für diese hocheffiziente Methode wird für quadratische Brennelemente demonstriert. In weiteren Tests wird der Grenzfall für die Übertragbarkeit des Konzepts auf, für VVER-440 Reaktoren typische, relativ kleine, sechseckige Brennelemente gezeigt.


* Email:

References

1 Doming, J.: Modern coarse-mesh methods – a development of the '70s. Conf. on Computational Meth. in Nuclear Engineering, Wa-shington (1979)Search in Google Scholar

2 Lawrence, R. D.: Progress in nodal methods for the solution of the neutron diffusion and transport equation. Prog, in Nuclear Energy17 (1986) 217Search in Google Scholar

3 Koebke, K.: A new approach to homogenization and group conden-sation. In: IAEA-TECDOC, Vol. 231, International Atomic Energy Agency, p.303 (1978)Search in Google Scholar

4 Smith, K. S.: Spatial homogenization methods for light water reac-tor analysis. PhD thesis, MIT (1980)Search in Google Scholar

5 Smith, K. S.: Assembly homogenization techniques for light water reactor analysis. Prog. Nucl. Energy17 (1978) 30310.1016/0149-1970(86)90035-1Search in Google Scholar

6 Kavenoky, A.: The SPH homogenization method. In: IAEA-TEC-DOC, Vol. 231, International Atomic Energy Agency, p. 181Search in Google Scholar

7 Hebert, A.; Benoist, P.: A consitent technique for the global homo-genization of a pressurized water reactor assembly. Nuclear Science and Engineering109 (1991) 360Search in Google Scholar

8 Hebert, A.; Mathonniere, G: Development of a third-generation Superhomogeneisation method for the homogenization of a pres-surized water reactor assembly. Nuclear Science and Engineering115 (1993) 129Search in Google Scholar

9 Chiang, R. T.; Doming, J. J.: A homogenization theory for lattices with burnup and non uniform loadings. Adv. in Reactor Physics and Shielding Cala, La Grange Park (1980)Search in Google Scholar

10 Zhang, H; Ruzwan-uddin; Doming, J. J.: Systematic homogenization and self-consitent flux and pin power reconstruction for nodal diffusion methods – I: diffusion equation-base theory. Nuclear Science and Engineering121 (1995) 226Search in Google Scholar

11 Zhang, H.; Doming, J. J.: A multiple-scales systematic theory for the simultaneous homogenization of lattice cells and fuel assemblies. Transport Theory and Statistical Physics26 (1997) 76510.1080/00411459708224422Search in Google Scholar

12 Aragonés, J. M.; Ahnert, C.: A linear discontinuous finite-difference formulation for synthetic coarse-mesh few-group diffusion calculations. Nucl. Sei. Eng.94 (1986) 30910.1016/0029-5493(86)90013-0Search in Google Scholar

13 Rahnema, F.: Boundary condition perturbation theory for use in spa-tial homogenization methods, Nucl. Sei. Eng.102 (1989) 183190Search in Google Scholar

14 Smith, K. S.: Practical and efficient iterative method for LWR fuel assembly homogenization. Trans. Am. Nucl. Soc.71 (1994) 238Search in Google Scholar

15 Clarno, K. T.; Adams, M. L.: Capturing the effect of unlike neigh-bors in a single-assembly calculation. Nuclear Science and Engi-neering149 (2005) 182Search in Google Scholar

16 Laletin, N. L.: Analysis of the Surface Pseudosources Method (G-Approximations) and Comparison with Other Numerical Methods for the Neutron Transport Equation. Transport Theory and Statisti-cal Physics27 (1998) 63965210.1080/00411459808205647Search in Google Scholar

17 Laletin, N. I.; Sultanov, N. V; Kovalishin, A. A.: Analysis and LWR Physics Benchmark Problems by SH and SPS Methods. M&C Topi-cal Meeting 2001, Salt Lake City, USA (2001)Search in Google Scholar

18 Grundmann, U.; Rohde, U.; Mittag, S.: DYN3D – three dimensional core model for steady-state and transient analysis of thermal reac-tors. Proc. PHYSOR 2000, Pittsburgh, Pennsylvania, USA.Search in Google Scholar

19 HELIOS Methods, Studsvik Scandpower (2003)Search in Google Scholar

20 Kozlowski, T.; Downar, T. J.: OECD/NEA and U.S. NRC PWR MOX/U02 core transient benchmark. OECD Nuclear Energy Agency Nuclear Science Committee, http://www.nea.fr/science/wprs/MOX-UOX-transients/benchmark_documents/specifications/mox_bench_spec.pdfSearch in Google Scholar

21 Grundmann, U.; Rohde, U.: The Code DYN3D/M2 for the Calculation of Reactivity Initiated Transients in Light Water Reactors with Hexagonal Fuel Elements – Code Manual and Input Data Description. FSS-2/92 (March 1992).Search in Google Scholar

22 DYN3D/M2, Reactivity Transients in Light H210 Reactors with Hexagonal Geometry, NEA Databank NEA-1411/01, http://www.oecd-nea.org/tools/abstract/detail/nea-1411/Search in Google Scholar

23 Bajgl, J.: Progress at the 5-year fuel cycle strategy implementation at Dukovany NPR 20-th Symposium of AER, 20.-24. 9. 2010, Hana-saari, FinlandSearch in Google Scholar

24 Merk, B.; Rohde, U.: An analytical solution for the consideration of the effect of adjacent fuel elements. Annals of Nuclear Energy38 (2011) 2374238510.1016/j.anucene.2011.07.005Search in Google Scholar

25 Merk, B.; Rohde, U.: An analytical solution for the consideration of the effect of adjacent fuel elements. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011), 08.-12. 05. 2011, Rio de Ja-neiro, BrazilSearch in Google Scholar

Received: 2012-1-4
Published Online: 2013-06-11
Published in Print: 2012-08-01

© 2012, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110248/html
Scroll to top button