Studies on boiling water reactor design with reduced moderation and analysis of reactivity accidents using the code DYN3D-MG
-
U. Rohde
, V. Pivovarov and Y. Matveev
Abstract
The multi-group version of the DYN3D reactor dynamics code was used for calculations for a new concept of a boiling water reactor with tight lattice of fuel rods and reduced neutron moderation. For that purpose, a 5-group cross section library was prepared and connected to the DYN3D code. Comparison calculations with the steady-state finite-difference code ACADEM showed a very good agreement. The capability of the DYN3D multi-group code in modeling transients in boiling water reactors with tight fuel element lattices was demonstrated by the analysis of two reactivity accidents initiated by the ejection of one control rod and unauthorized withdrawal of a control rod bank from the reactor core. The corresponding analyses were performed for begin of cycle conditions, when the considered control rods are at their maximum insertion depth.
Kurzfassung
Die Mehr-Gruppen-Version des Reaktordynamikcodes DYN3D wurde für stationäre und transiente Rechnungen zu einem neuen Konzept eines Siedewasserreaktors mit engem Brennstabgitter und reduzierter Neutronenmoderation benutzt. Zu diesem Zweck wurde eine 5-Gruppen-Bibliothek von Wirkungsquerschnitten generiert und mit DYN3D verlinkt. Vergleichsrechnungen mit dem stationären Finite-Differenzen-Diffusionscode ACADEM zeigten eine sehr gute Übereinstimmung. Die Möglichkeit der Berechnung von Transienten in SWR mit engem Brennstabgitter wurde anhand der Analyse von zwei Reaktivitätstransienten, einem Stabauswurf und einem unkontrollierten Verfahren einer Regelgruppe, demonstriert. Die Analysen wurden für den Kernzustand am Beginn eines Abbrandzyklus durchgeführt, wenn die betrachteten Regelstäbe ihre maximale Eintauchtiefe haben.
References
1 Grundmann, U.; Rohde, U.; Mittag, S.: DYN3D – Three Dimensional Core Model for Steady-State and Transient Analysis of Ther-mal Reactors. Proc. of the 2000 ANS Int. Topical Meeting on Ad-vances in Reactor Physics and Mathematics and Computation into the Next Millennium (PHYSOR 2000), Pittsburgh, USA, CDROM, (2000)Search in Google Scholar
2 Beckert, C; Grundmann, U.: Development and verification of a nodal approach for solving the multigroup SP3 equations. Annals of Nuclear Energy35 (2008) 75–8610.1016/j.anucene.2007.05.014Search in Google Scholar
3 Okubo, T.; Shirakawa, T.; Takeda, R.; Yokoyama, N.; Iwamura, T.; Wada, S.: Conceptual Designing of Reduced-Moderation Water Reactors (1) – Design for BWR-Type Reactors. Proc. ICONE-8, (2000), ICONE-8422Search in Google Scholar
4 Uchikawa, S.; Okubo, T.; Kugo, T.; Akie, H.; Takeda, R.; Nakano, Y.; Ohunki, A.; Iwamura, T.: Conceptual Design of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) and its Recycle Character-istics. Journal of Nucl Science and Technology44 (2007) 277–28410.1080/18811248.2007.9711283Search in Google Scholar
5 Bondarenko, A. V; Matveev, Yu.V.; Pivovarov, V. A.: Development of the Dynamic Code DYN3D Coupled to Constants Maintenance Based on WIMS. Int. Information Exchange Forum “Safety Analysis for NPPs of WER and RBMK Type”, 26–30 October 1998; Ob-ninsk, Russian FederationSearch in Google Scholar
6 Grundmann, U.: HEXNEM – A Nodal Method for the Solution of the Neutron Diffusion Equation in Hexagonal Geometry. M & C ′99 – Madrid Proc. of the Int. Conf. on Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Ap-plications, pp. 1086–1094, Madrid, 27–30 September, 1999Search in Google Scholar
7 WIMSD A Neutronie Code for Standard Lattice Physics Analyses. Distributed by the NEA Databank, NEA 1507/02Search in Google Scholar
8 Grundmann, U.;Rohde, U.; Mittag, S.;Kliem, S.: DYN3D version 3.2 – code for calculation of transients in light water reactors (LWR) with hexagonal or quadratic fuel elements – description of models and methods. Scientific-Technical Report, Forschungszentrum Rossendorf; FZR-434, 2005Search in Google Scholar
9 Manera, A.; Rohde, U.; Prasser, H.-M.; van der Hagen, T. H. J. J.: Modelling of flashing-induced instabilities in the start-up phase of natural-circulation BWRs using the code FLOCAL. Nuclear Engi-neering and Design235 (2005) 1517–153510.1016/j.nucengdes.2005.01.008Search in Google Scholar
10 Pernica, R.; Cizek, J.: PG General Correlation of CHFR and Statistical evaluation Results. Report UJV 10156-T, Rež, February 1994Search in Google Scholar
11 Tamai, H.; Kureta, M.; Yoshida, H.; Akimoto, H.: Pressure Drop Characteristics in Tight-Lattice Bundles for Redused-Moderation Water Reactors. JSME Int. Journal, Series B, 47 (2004) 293–29810.1299/jsmeb.47.293Search in Google Scholar
12 Tamai, H.; Kureta, M.; Ohnuki, A.; Sato, T.; Akimoto, H.: Pressure Drop Experiments using Tight-Lattice 37-Rod Bundles. Journal of Nuci. Sc. and Technology43 (2006) 699–70610.1080/18811248.2006.9711151Search in Google Scholar
13 Martinelli, R. C; Nelson, D. B.: Prediction of pressure drop during forced-circulation boiling of water. Trans. ASME, 70 (1948) 695–702Search in Google Scholar
14 Kureta, M.; Tamai, H.; Ohnuki, A.; Sato, T; Liu, W.; Akimoto, H.: Akimoto: Critical Power Experiment with a Tight-Lattice 37-Rod Bundle. Journal of Nuci. Sc. and Technol., 43 (2006) 198–20510.1080/18811248.2006.9711082Search in Google Scholar
15 Liu, W.; Kureta, M.; Yoshida, H.; Ohnuki, A.; Akimoto, H.: An Im-proved Critical Power Correlation for Tight-Lattice Rod Bundles. Journal of Nuci. Sc. and Technol.44 (2007) 558–57110.1080/18811248.2007.9711845Search in Google Scholar
16 Matveev, Yu. V; Pivovarov, V. A.: Adaptation of multi-group version of DYN3D code to analytical studies on boiling water reactor with reduced neutron moderation. Analysis of reactivity accidents, Inter-nal Report FZD\FWS\2010\09, Rossendorf, October 2009Search in Google Scholar
17 Osmachkin, V. S.; Borisov, V. D.: Report IAE-1957, Kurchatov Insti-tute, Moscow, 1971Search in Google Scholar
18 Osmachkin, V. S.: International Seminar “Teplofizika 78. Buda-pest”, March 1978, Proc. Vol. 1, p. 27Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries/Kurzfassungen
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – Selected contributions to the XXIst Symposium of the Atomic Energy Research organization
- Technical Contributions/Fachbeiträge
- Development of multi-group spectral code TVS-M
- Qualification of the APOLLO2 lattice physics code of the NURISP platform for VVER hexagonal lattices
- The simplified P3 approach on a trigonal geometry of the nodal reactor code DYN3D
- An analytical solution for the consideration of the effect of adjacent fuel assemblies; extension to VVER-440 type fuel assemblies
- Studies on boiling water reactor design with reduced moderation and analysis of reactivity accidents using the code DYN3D-MG
- Simulations of RUTA-70 reactor with CERMET fuel using DYN3D/ATHLET and DYN3D/RELAP5 coupled codes
- Analysis of coolant flow in central tube of VVER-440 fuel assemblies
- Effect of spacer grid mixing vanes on coolant outlet temperature distribution
- Study on severe accidents and countermeasures for VVER-1000 reactors using the integral code ASTEC
- Assessment of spectral history influence on PWR and WWER core
- New practice for the evaluation of rod efficiency measurement by rod drop at the NPP Paks
- Comparison of square and hexagonal fuel lattices for high conversion PWRs
- VVER-440 with inert matrix fuel – viable direction to sustainability
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries/Kurzfassungen
- Editorial
- Research on the reactor physics and reactor safety of VVER reactors – Selected contributions to the XXIst Symposium of the Atomic Energy Research organization
- Technical Contributions/Fachbeiträge
- Development of multi-group spectral code TVS-M
- Qualification of the APOLLO2 lattice physics code of the NURISP platform for VVER hexagonal lattices
- The simplified P3 approach on a trigonal geometry of the nodal reactor code DYN3D
- An analytical solution for the consideration of the effect of adjacent fuel assemblies; extension to VVER-440 type fuel assemblies
- Studies on boiling water reactor design with reduced moderation and analysis of reactivity accidents using the code DYN3D-MG
- Simulations of RUTA-70 reactor with CERMET fuel using DYN3D/ATHLET and DYN3D/RELAP5 coupled codes
- Analysis of coolant flow in central tube of VVER-440 fuel assemblies
- Effect of spacer grid mixing vanes on coolant outlet temperature distribution
- Study on severe accidents and countermeasures for VVER-1000 reactors using the integral code ASTEC
- Assessment of spectral history influence on PWR and WWER core
- New practice for the evaluation of rod efficiency measurement by rod drop at the NPP Paks
- Comparison of square and hexagonal fuel lattices for high conversion PWRs
- VVER-440 with inert matrix fuel – viable direction to sustainability