Home Technology Qualification of the APOLLO2 lattice physics code of the NURISP platform for VVER hexagonal lattices
Article
Licensed
Unlicensed Requires Authentication

Qualification of the APOLLO2 lattice physics code of the NURISP platform for VVER hexagonal lattices

  • G. Hegyi , A. Keresztúri and A. Tóta
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

The experiments performed at the ZR-6 zero power critical reactor by the Temporary International Collective (TIC) and a burnup benchmark specified for depletion calculation of a VVER-440 assembly containing Gd burnable poison were used to qualify the APOLLO2.8-3.E (APOLLO2) code as a part of its ongoing validation activity. The work is part of the NURISP project, where KFKI AEKI undertook to develop and qualify some calculation schemes for hexagonal problems. Concerning the ZR-6 measurements, single cell, macro-cell and 2D calculations of selected regular and perturbed experiments are used for the validation. In the 2D cases, the radial leakage is also taken into account by the axial leakage represented by the measured axial buckling. Criticality parameter and reaction rate comparisons are presented. Although various sets of the experiments have been selected for the validation, good agreement of the measured and calculated parameters could be found by using the various options offered by APOLLO2. An additional mathematical benchmark – presented in the paper – also attests for the reliability of APOLLO2. All the test results prove the reliability of APOLLO2 for VVER core calculations.

Kurzfassung

Das Programm APOLLO2 steht derzeit in der Version 2.83.E zur Verfügung und wird kontinuierlich validiert. Ein Teil dieser Validierung fand im Rahmen des NURISP Projektes statt. Dazu wurden Experimente am Nullleistungsreaktor ZR-6, die vom sog. Temporary International Collective (TIC) durchgeführt wurden, und ein Abbrand-Benchmark zur Bestimmung des Abbaus des in einem WWER-440 Brennelement enthaltenen abbrennbaren Absorbers Gd herangezogen. Zur Validierung auf Basis der ZR-6 Experimente wurden Berechnungen für Einzelzellen, Makrozellen sowie 2D-Berechnungen ausgewählter regulärer und Experimente mit eingebrachter Störung durchgeführt. Im Falle der 2D-Berechnungen wurde die radiale Leckage berücksichtigt basierend auf dem gemessenen axialen Buckling. Im Beitrag werden kritische Parameter und Reaktionsraten verglichen. Obwohl verschiedenste Experimente für die Validierung ausgesucht wurden, zeigte sich eine gute Übereinstimmung zwischen Messwerten und Rechenergebnissen unter Nutzung der verschiedenen Modelloptionen des Programms APOLLO2. Alle durchgeführten Vergleiche zeigen die zuverlässige Nutzbarkeit des Programms APOLLO2 für WWER-Kernberechnungen.


* Email:

References

1 Sanchez, R.; et al.: APOLLO 2: A user oriented, portable modular code for multi-group transport assembly calculations. Nucl. Sei. and Eng.100 (1988) 352362Search in Google Scholar

2 Sanchez, R.; Zmijarevic, L; et al.: APOLL02 Year 2010. Nuclear Engineering and Technology42 (2010) No 5Search in Google Scholar

3 Szatmâry, Z. (coordinator); et al.: Experimental Investigations of the Physical Properties of VVER-type Uranium-Water Lattices. Final Report of TIC, Vol. 1, Akademia Kiadó, Budapest, 1985Search in Google Scholar

4 Vidovszky, I. (coordinator); et al.: Experimental Investigations of the Physical Properties of WER-type Uranium-Water Lattices. Final Report of TIC, Vol. 4 Akademia Kiadó, Budapest, 1998Search in Google Scholar

5 Szatmâry, Z.: Additional Data, Amendments, Réévaluations, Sup-plement to the Final Report of TIC. Akadémiai Kiadó, Budapest, 2001Search in Google Scholar

6 Szatmâry, Z. (evaluator): The WER Experiments: Regular and Perturbed Hexagonal Lattices of Low-Enriched UO2 Fuel Rods in Light Water. Part 2, Handbook of Criticality Safety Benchmark Experiments, NEA/NSC/DOC/(99)03/IV Volume IV, LEU-COMP-THERM-015 and LEU-COMP-THERM-036 (2007)Search in Google Scholar

7 Mikolas, P.: Spectral Calculations of WER-440 FA with Gd Burn-able Absorber. Proc. of the 10th Symposium of AER, September 18–22, 2000, Moscow, RussiaSearch in Google Scholar

8 Zmijarevic, I.; Masiello, E.; Sanchez, R.: Flux reconstruction meth-ods for assembly calculations in the code APOLL02. Proc. PHY-SOR-2006., Vancouver, BC, Canada, Sept.12–14 (2006)Search in Google Scholar

9 APOLL02.8-3 Users Manual, CEA Saclay, 2010Search in Google Scholar

10 Hegyi, Gy.: Some New Experience with ZR-6 Measurements Using Different Code System. Proc. of the 15th Symposium of AER, Sep-tember 23–29, 2007, Yalta, UkraineSearch in Google Scholar

11 Santandrea, S.; Sanchez, R.; Mosca, P.: A Linear Surface characteris-tic approximation for neutron transport in unstructured meshes. Nucl. Sei. Eng.160 (2008) 2340Search in Google Scholar

12 Santandrea, S.; Sanchez, R.. Acceleration techniques for the charac-teristic method in unstructured meshes. Annals of Nuclear Energy29 (2002) 32335210.1016/S0306-4549(01)00049-4Search in Google Scholar

13 Santandrea, S: A new multi-domain DPN technique to accelerate the MOC in unstructured meshes. M&C 2005, Avignon, France, September 2005Search in Google Scholar

14 Validation results from JEF2.2 to JEFF3.1.1. JEFF Report 22, © OECD/NEA (2009)Search in Google Scholar

15 Stankovski, Z.: SILENE Users Guide. CEA Saclay, 2010Search in Google Scholar

16 Mikolas, P.: Results of Benchmark for WER-440 FA with Gd203 + U02 Pins Burnup Comparison. Proc. of the 12th Sympo-sium of AER, September 22–28, Sunny Beach, BulgariaSearch in Google Scholar

17 Kereszturi, A.; Hegyi, Gy.; Korpas, L.; Maraczy, Cs.; Makai, M.; Tel-bisz, M.: General features and validation of the recent KARATE-440 code system. Int. J. Nuclear Energy Science and Technology (2010) 208238Search in Google Scholar

18 Simeonov, T.; Wemple, C.: HELIOS-2: Benchmarking Against Hex-agonal Lattices. Proc. of the 18th Symposium of AER, October 6–10, 2008, Eger, HungarySearch in Google Scholar

Received: 2012-1-10
Published Online: 2013-06-11
Published in Print: 2012-08-01

© 2012, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110246/html
Scroll to top button