Home Technology Comparison of square and hexagonal fuel lattices for high conversion PWRs
Article
Licensed
Unlicensed Requires Authentication

Comparison of square and hexagonal fuel lattices for high conversion PWRs

  • D. Kotlyar and E. Shwageraus
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

This paper reports on an investigation into fuel design choices of a pressurized water reactor operating in a self-sustainable Th-233U fuel cycle. In order to evaluate feasibility of this concept, two types of fuel assembly lattices were considered: square and hexagonal. The hexagonal lattice may offer some advantages over the square one. For example, the fertile blanket fuel can be packed more tightly reducing the blanket volume fraction in the core and potentially allowing to achieve higher core average power density. The calculations were carried out with Monte-Carlo based BGCore code system and the results were compared to those obtained with Serpent Monte-Carlo code and deterministic transport code BOXER. One of the major design challenges associated with the SB concept is high power peaking due to the high concentration of fissile material in the seed region. The second objective of this work is to estimate the maximum achievable core power density by evaluation of limiting thermal hydraulic parameters. The analysis showed that both fuel assembly designs have a potential of achieving net breeding. Although hexagonal lattice was found to be somewhat more favorable because it allows achieving higher power density, while having breeding performance comparable to the square lattice case.

Kurzfassung

In diesem Beitrag werden Untersuchungen zur Auswahl verschiedener Brennelementanordnungen für DWR mit Th233-U Brennstoffkreislauf untersucht. Dabei wurde die Realisierbarkeit einer quadratischen und einer hexagonalen Anordnung der Brennelemente verglichen. Hexagonale Anordnungen zeichnen sich durch eine mögliche höhere Packungsdichte des Brutmaterials im Kern und damit durch eine höhere mittlere Leistungsdichte aus im Vergleich zu quadratischen Anordnungen. Die Berechnungen wurden mit dem auf der Monte-Carlo Methode basierenden Programmsystem BGCore, dem Serpent Monte-Carlo Programm und dem deterministischen Transportcode BOXER durchgeführt und miteinander verglichen. Hohe Leistungspeaks infolge der hohen Konzentration von spaltbarem Material in der Brutzone sind eine wesentliche Herausforderung an die DWR-Konzepte mit Th233-U Brennstoffkreisläufen. Ein weiteres Ziel der Berechnungen war die Bestimmung dieser Leistungspeaks und die Berechnung der maximal möglichen Kernleistungsdichte unter Beachtung der limitierenden thermohydraulischen Parameter. Die Analysen zeigten, dass in beiden Brennstabanordnungen positive Brutraten erzielt werden können. Die hexagonale Anordnung wird derzeit etwas mehr favorisiert, weil für diese höhere Leistungsdichten bei im Vergleich zur quadratischen Anordnung vergleichbaren Brutraten erzielt werden können.

References

1 Shwageraus, E.; Volaski, D.; Fñdman, E.Investigation of Fuel As-sembly Design Options for High Conversion Thorium Fuel Cycle in PWRs. ANFM2009, South Carolina (2009)Search in Google Scholar

2 Volaski, D.; Fñdman, E.; Shwageraus, E.Thermal Design Feasibil-ity of Th-233U PWR Breeder. Global2009, Paris, France (2009)Search in Google Scholar

3 Paratte, J.; Grimm, P.; Hollard, J.: User's Manual for the Fuel Assembly Code BOXER. PSI, CH-5232 Villingen PSI, Switzerland (1995)Search in Google Scholar

4 Paratte, J.; Foskolos, K.; Grimm, P.; Maeder, C: Das PSI Code-system ELCOS zur stationären Berechnung von Leichtwasser-reaktoren. Proc. Jahrestagung Kerntechnik, Travemünde, Germany, (1998) p. 59Search in Google Scholar

5 Index to the JEF-1 Nuclear Data Library, Volume II, September 1985, OECD NEA Data BankSearch in Google Scholar

6 The JEFF-3.1.1 Nuclear Data Library, OECD2009Search in Google Scholar

7 Toishigawa, A.; Ikehara, T.; Yamamoto, M.; Maruyama, H.: Reactiv-ity Impact of Cross Section Library Update from ENDF/B-VI.8 to ENDF/B-VII.O on BWR Fuel Burnup Calculations. Symposium on Nuclear Data, Tokai, Japan, November 29–30, 2007Search in Google Scholar

8 Fñdman, E.; Shwageraus, E.; Galperin, A.: Implementation of multi-group cross-section methodology in BGCore MC-depletion code. Proc. PHYSOR 2008, Interlaken, SwitzerlandSearch in Google Scholar

9 Kotlyar, D.; Shaposhnik, Y.; Fñdman, E.; Shwageraus, E.Coupled neutronie thermo-hydraulic analysis of full PWR core with Monte-Carlo based BGCore system. Nuclear Engineering and Design241 (2011) 3777378610.1016/j.nucengdes.2011.07.028Search in Google Scholar

10 Leppänen, J.: Development of a New Monte Carlo Reactor Physics Code. DSc. Thesis, Helsinki University of Technology (2007). VTT Publications 640Search in Google Scholar

11 Briesmeister, J. F Ed.: MCNP – A General Monte Carlo N-Particle Code, Version 4GLos Alamos National Laboratory. 2000, LA-13709-MSearch in Google Scholar

12 Koning, A.; Forrest, R.; Kellett, M.; Mills, R.; Henrikson, H.; Ruga-ma, Y: The JEFF-3.1 Nuclear Data Library. JEFF Report 21, 2006, OECD/NEA, Paris, FranceSearch in Google Scholar

13 Haeck, W.; Verboomen, B.: An optimum approach to Monte Carlo burnup, Nuclear Science and Engineering156 (2007)10.13182/NSE07-A2695Search in Google Scholar

14 Fñdman, E.; Shwageraus, E.; Galperin, A.: Efficient generation of one-group cross sections for coupled Monte Carlo depletion calcu-lations, Nuclear Science and Engineering159 (2008)10.13182/NSE07-34Search in Google Scholar

Received: 2012-12-21
Published Online: 2013-06-11
Published in Print: 2012-08-01

© 2012, Carl Hanser Verlag, München

Downloaded on 12.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/124.110256/html
Scroll to top button