Startseite Parameters in lock-in thermography of CFRP laminates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Parameters in lock-in thermography of CFRP laminates

  • Philipp Myrach , Christiane Maierhofer , Markus Rahammer und Marc Kreutzbruck
Veröffentlicht/Copyright: 24. Dezember 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Active thermography with lock-in excitation is a nondestructive testing method that is also feasible for testing of carbon fiber reinforced polymers (CFRP). For validating the method extensive investigations were done during a research project in order to advance a standardization process. The most important parameters of optical and ultrasonic excitation thermography were investigated. For example, the appropriate selection of spectral sensitivity of the used infrared camera systems is important for recording undisturbed thermal signals. Regarding excitation, influences of excitation power and ultrasonic frequency were studied. Furthermore, material parameters such as CFRP layup are known for strongly affecting the results of measurement.

Kurzfassung

Als zerstörungsfreies Prüfverfahren ist die aktive Thermografie sehr gut zur Prüfung von kohlefaserverstärkten Verbundwerkstoffen (CFK) geeignet. Um den Standardisierungsprozess für dieses Verfahren zu unterstützen, wurde im Rahmen eines Forschungsprojektes eine umfangreiche Verfahrensvaldierung durchgeführt. Die wichtigsten Parameter für die Anregung mit optischen und ultraschallbetriebenen Quellen wurden systematisch untersucht. So ist unter anderem die Wahl der spektralen Empfindlichkeit des Infrarot-Kamerasystems wichtig, um ungestörte thermische Messdaten zu erfassen. Bezogen auf die Anregung wurden der Einfluss der Anregungsleistung und der Ultraschallfrequenz untersucht. Zudem wurden Materialparameter wie der Lagenaufbau von CFK untersucht, der dafür bekannt ist, die Messergebnisse wesentlich zu beeinflussen.


§Correspondence Address, Dr. rer. nat. Philipp Myrach, Bundesanstalt für Materialforschung und -prüfung (BAM), 8.7, Thermographic Methods, Unter den Eichen 87, 12205 Berlin, Germany. E-mail:

Dr. rer. nat. Philipp Myrach, born in 1980, finished his dissertation at the Fritz Haber Institute of the Max Planck Society in Berlin, Germany, studying morphological and optical properties of metal particles by scanning tunneling microscopy. In 2010, he earned his doctorate in Physics from Technical University Berlin. In 2012, he joined the BAM Federal Institute for Materials Research and Testing focusing on the application of active thermography techniques, as pulse, lock-in and flying laser spot thermography, for nondestructive testing of metals and CFRP structures as well as active thermography on buildings and concrete structures.

Markus Rahammer, born in 1986, received his diploma in Aerospace Engineering from University of Stuttgart, Germany, in the fields of lightweight engineering and thermodynamics in 2011. Then he joined the Institut für Kunststofftechnik (IKT) in Stuttgart, Germany to pursue research in the NDT field of thermographic testing. The main research involves lock-in thermography techniques with optical, mechanical and ultrasonic excitation sources.

Dr. rer. nat. Christiane Maierhofer, born in 1964, is Head of the BAM division 8.7 Thermographic Methods. She studied Physics at Technical University of Berlin, Germany and received her doctorate in 1992. Her current field of research is the development of active thermography methods for nondestructive testing. She is Chairperson of international working groups for the standardization of thermography for nondestructive testing.

Prof. Dr. rer. nat. Marc Kreutzbruck, born in 1969, received his PhD and habilitation degrees in Applied Physics from University of Giessen, Germany in 1998 and 2005, respectively. His research in superconductivity by SQUIDs, in nanotechnology and magnetic sensors, was followed by acoustic, thermal and combined NDT techniques. Since 2007, he has been Head of the NDT division 8.4 at BAM focusing on acoustic, electromagnetic and thermal NDT. In 2014, he accepted an NDT chair at University of Stuttgart, Germany, joining the Executive Committee of the Institut für Kunststofftechnik (IKT). He is also a visiting scientist at BAM, Berlin, Germany.


References

1 G. M.Carlomagno, P. G.Berardi: Unsteady thermography in nondestructive testing, Proceedings of the 3rd Biannual Information Exchange, St. Louis/USA (1976), pp. 3339Suche in Google Scholar

2 J. L.Beaudoin, E.Merienne, R.Danjoux, M.Egee: Numerical system for infrared scanners and application to the subsurface control of materials by photo-thermal radiometry – Infrared technology and applications, SPIE590 (1985), p. 28710.1117/12.951996Suche in Google Scholar

3 P. K.Kuo, Z. J.Feng, T.Ahmed, L. D.Favro, R. L.Thomas, J.Hartikainen: Parallel thermal wave imaging using a vector lock-in video technique, Photoacoustic and Photothermal Phenomena, P.Hess and J.Pelzl, Springer Verlag, Heidelberg, Germany (1988), pp. 41541810.1007/978-3-540-48181-2_109Suche in Google Scholar

4 G.Busse, D.Wu, W.Karpen: Thermal wave imaging with phase sensitive modulated thermography, Journal of Applied Physics71 (8), (1992), pp. 3962396510.1063/1.351366Suche in Google Scholar

5 D.Wu, A.Salerno, U.Malter, R.Aoki, R.Kochendörfer, P. K.Kächele, K.Woithe, K.Pfister, G.Busse: Inspection of aircraft structural components using lock-in thermography, Quantitative InfraRed Thermography, QIRT 96, Eurotherm Series 50, D.Balageas, G.Busse, G. M.Carlomagno, (1997), pp. 251256Suche in Google Scholar

6 G.Riegert, K.Eberle: Thermography Methods for Non-destructive Evaluation (NDE), Damage and its Evolution in Fiber Composite Materials: Simulation and Non-destructive Evaluation, G.Busse, B.-H.Kröplin, F. K.Wittel, ISBN 3-930683-90-3 (2006), pp. 107123Suche in Google Scholar

7 P.Myrach, H.Steinfurth, C.Maierhofer, M.Rahammer: Final Report: Development of norms and standards for active thermography using lock-in excitation, 2015Suche in Google Scholar

8 J.Rantala, D.Wu, G.Busse: Amplitude modulated lock-in vibrothermography for NDE of polymers and composites, Research in Nondestructive Evaluation7.4, (1996), pp. 21522810.1007/BF01606389Suche in Google Scholar

9 I.Solodov, M.Rahammer, G.Busse: A local defect resonance for linear and nonlinear ultrasonic thermography, Proceedings of the 11th Quantitative Infrared Thermography Conference, Napoli, Italy (2012), ID-38510.21611/qirt.2012.385Suche in Google Scholar

10 I.Solodov, M.Rahammer, D.Derusova, G.Busse: Highly-efficient and noncontact vibro-thermography via local defect resonance, Proceedings of the 12th Quantitative Infrared Thermography Conference, Bordeaux, France (2014), ID-132 10.1080/17686733.2015.1026018Suche in Google Scholar

Published Online: 2015-12-24
Published in Print: 2016-01-05

© 2016, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Quantification of vanadium precipitates in HSLA steel by synchrotron X-ray absorption spectroscopy (XAS)
  5. Optimization of the wear behavior of uncoated, TiN and AlTiN coated cold work tool steel 1.2379 using response surface methodology
  6. Sensitivity analysis of the residual stress state in friction stir welding of high strength aluminum alloy
  7. Probability of detection of minute defects by ultrasonic automated testing equipment in view of Bayesian inference
  8. Parameters in lock-in thermography of CFRP laminates
  9. Effect of tool material on microstructure and mechanical properties in friction stir welding
  10. Microstructures of an AZ61 wrought magnesium alloy fabricated by a novel SPD process using thermomechanical simulation
  11. Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70
  12. Effects of post-curing on the thermo-mechanical behavior and the chemical structure of highly filled phenolic molding compounds
  13. Effect of pressing temperature on the wear resistance of a Co-based Cr-Mo powder alloy produced by hot pressing
  14. Deep micro-hole drilling of Hardox 500 by electro-discharge machining
  15. Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm
  16. Structural design of vehicle components using gravitational search and charged system search algorithms
  17. Electrical resistivity and strength properties of sodium hydroxide contaminated soil solidified with cement
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110814/html
Button zum nach oben scrollen