Home Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70
Article
Licensed
Unlicensed Requires Authentication

Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70

  • Mohammad J. Moradi and Mostafa Ketabchi
Published/Copyright: December 24, 2015
Become an author with De Gruyter Brill

Abstract

Nickel-based alloys are a crucial class of materials because of their excellent corrosion resistance. In the present study, single layer and two layers alloy 625 weld overlays were deposited by GTAW process on A516 grade 70 carbon steel. The dilution in terms of Fe, Ni, Mo and Nb content was calculated in 30 points of weld overlay. Microstructure observations showed that alloy 625 had austenitic structure with two types of Laves and NbC secondary phases. The uniform and pitting corrosion resistance of alloy 625 weld overlay as casted and as forged were evaluated in accordance with ASTM G48-2011 standard at different temperatures to determine the weight loss and critical pitting temperature. For achieving a better comparison, samples from alloy 625 as casted and as forged were tested under the same conditions. The results point out that single layer alloy 625 weld overlay is not suitable for chloride containing environments, two layers alloy 625 weld overlay and alloy 625 as casted have acceptable corrosion resistance and almost the same critical pitting temperature. Alloy 625 as forged has the best corrosion resistance and the highest critical pitting temperature among all test specimens. Also, the corrosion behavior was evaluated in accordance with ASTM G28 standard. The corrosion rate of single layer weld overlay was unacceptable. The average corrosion rate of two layers weld overlay and in casted condition were 35.82 and 33.01 mpy, respectively.

Kurzfassung

Nickellegierungen sind aufgrund ihres exzellenten Korrosionswiderstandes eine bedeutende Werkstoffklasse. In der diesem Beitrag zugrunde liegenden Studie wurden mittels WIG-Schweißens ein- und zweilagige Schweißplattierungen auf den Kohlenstoffstahl A516 (Grade 70) aufgebracht. Die Vermischung in Form des Fe-, Ni-, Mo- und Nb-Gehaltes wurde an 30 Punkten der Schweißplattierungen berechnet. Die mikrostrukturellen Untersuchungen ergaben, dass die Legierung 625 eine austenitische Struktur mit zwei Arten von sekundären Phasen, nämlich Laves- und NbC-Phasen, aufweist. Der Widerstand gegen gleichmäßige Korrosion und Lochkorrosion der Schweißplattierungen sowie der Legierung 625 im Guß- und Schmiedezustand wurden nach dem ASTM G48-2011 Standard bei verschiedenen Temperaturen ermittelt, indem der Gewichtsverlust und die kritische Pittingtemperatur bestimmt wurden. Um einen besseren Vergleich zu erhalten, wurden Proben der Legierung im gegossenen und geschmiedeten Zustand unter denselben Bedingungen geprüft. Die Ergebnisse zeigen, dass die einlagigen Schweißplattierungen der Legierungen 625 für chloridhaltige Medien nicht geeignet sind, dagegen weisen die zweilagigen Plattierungen und die Legierung 625 im geschmiedeten Zustand einen akzeptablen Korrosionswiderstand sowie etwa dieselben kritischen Pittingtemperaturen auf. Im geschmiedeten Zustand hat die Legierung 625 den besten Korrosionswiderstand und die höchste kritische Pittingtemperatur. Außerdem wurde das Korrosionsverhalten nach dem ASTM G28 Standard geprüft. Die Korrosionsrate der einlagigen Schweißplattierungen war inakzeptabel. Die durchschnittliche Korrosionsrate der zweilagigen Plattierungen und des Schmiedezustandes betrugen entsprechend 35,82 und 33,01 μm × a−1.


§Correspondence Address, Mohammad J. Moradi, Petroleum Engineering Department, Amirkabir University of Technology, Hafez Street, Tehran, Iran. E-mail:

Mohammad J. Moradi, born in 1989, attended Amir Kabir University of Technology, Tehran, Iran, where he received his BSc in Material Science in 2012. He continued his studies and obtained his Master of Science degree from Amir Kabir University of Technology, Tehran, Iran in 2014.

Dr. Mostafa Ketabchi, born in 1964, attended Sharif University of Technology, Tehran, Iran, where he received his BSc in Metallurgical Engineering in 1986. He obtained his Master of Science degree from Sharif University of Technology, Tehran, Iran, in 1991, and then his PhD from Tohoko University, Tohoko, Japan, in 1999. He is now Associate Professor in Department of Mining and Metallurgical Engineering in Amir Kabir University of Technology, Tehran, Iran.


References

1 J.Perepezko: The hotter the engine, the better, Materials Science326 (2009), No. 5956, pp. 1068106910.1126/science.1179327Search in Google Scholar PubMed

2 J.Olsson, M.Snis: Duplex – A new generation of stainless steels for desalination plants, Desalination205 (2007), Issue 1, pp. 10411310.1016/j.desal.2006.02.051Search in Google Scholar

3 J.DuPont, J.Lippold, S.Kiser: Welding Metallurgy and Weldability of Nickel-Based Alloys, 1st Ed., John Wiley & Sons, United States of America (2009) 10.1002/9780470500262Search in Google Scholar

4 L.Xu, M.Li, H.Jing, Y.Han: Electrochemical behavior of corrosion resistance alloys, Advanced Materials Research418420 (2011), pp. 1097110110.4028/www.scientific.net/amr.418-420.1097Search in Google Scholar

5 ASME Boiler and Pressure Vessel Code: IX Welding and Brazing Qualifications, ASME, United States of America (2010) 10.1115/1.859872.ch25Search in Google Scholar

6 V.Kumar, C.Lee, G.Verhaeghe, S.Raghunathan: CRA weld overlay – Influence of welding process and parameters on dilution and corrosion resistance, Stainless Steel World Conference, United States of America (2010)Search in Google Scholar

7 ASTM A 516/A 516M: Standard specification for pressure vessel plates, carbon steel for moderate and lower-temperature service, ASTM, United States of America (2001) 10.1520/a0516-a0516m-01Search in Google Scholar

8 ASTM G48: Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution, ASTM, United States of America (2011) 10.1520/g0048Search in Google Scholar

9 H.Lee, S.Jeng, C.Yen, T.Kuo: Dissimilar welding of nickel-based alloy 690 to SUS 304L with Ti addition, Journal of Nuclear Materials335 (2004), pp. 1538154710.1016/j.jnucmat.2004.06.004Search in Google Scholar

10 C.Silva, H.Miranda, M.Motta, J.Farias, C.Afonso, A.Ramirez: New insight on the solidification path of an alloy 625 weld overlay, Journal of Materials Research and Technology2 (2013), Issue 3, pp. 22823710.1016/j.jmrt.2013.02.008Search in Google Scholar

11 S.Banovic, J.DuPont, A.Marder: Dilution and microsegregation in dissimilar metal welds between super austenitic stainless steel and nickel-based alloys, Science and Technology of Welding and Joining7 (2002), Issue 6, pp. 3748310.1179/136217102225006804Search in Google Scholar

12 DNV Offshore Standard DNV-OS-F101, Submarine Pipeline Systems, DNV, Norway (2012)Search in Google Scholar

13 N.Nagaswami, M.Streicher: Accelerated laboratory tests for crevice corrosion of stainless alloys, Corrosion83 (1983), No. 71, National Association of Corrosion Engineers, United States of America (1983)Search in Google Scholar

14 A.Garner: Crevice corrosion of stainless steels in sea water: Correlation of field data with laboratory ferric chloride tests, Corrosion37 (1981), No. 3, pp. 17818410.5006/1.3622163Search in Google Scholar

15 M.Rockel, M.Renner: Pitting, crevice and stress corrosion resistance of high chromium and molybdenum alloy stainless steels, Materials and Corrosion35 (1986), pp. 53754210.1002/maco.19840351202Search in Google Scholar

16 http://www.corrosionlab.com/papers/astmg48/problems-in-utilizing-astm-g-48.htmSearch in Google Scholar

17 R.Baboian: Application and Interpretation of G48 Standard, Corrosion Tests and Standards, ASTM, United States of America (2005)Search in Google Scholar

18 ASTM G 28: Standard test methods of detecting susceptibility to intergranular corrosion in wrought, nickel-rich, chromium-bearing alloys, ASTM, United States of America (2008) 10.1520/g0028-02r08Search in Google Scholar

19 E.Toyserkani, S.Corbin, A.Khajepour: Laser Cladding, 1st Ed., CRC press, United States of America (2005) 10.1201/9781420039177Search in Google Scholar

20 R.Corbett, B.Saldanha: Evaluation of intergranular corrosion, Metals Handbook 13, 9th Ed., pp. 239241, ASM International, United States of America (1987)Search in Google Scholar

Published Online: 2015-12-24
Published in Print: 2016-01-05

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Quantification of vanadium precipitates in HSLA steel by synchrotron X-ray absorption spectroscopy (XAS)
  5. Optimization of the wear behavior of uncoated, TiN and AlTiN coated cold work tool steel 1.2379 using response surface methodology
  6. Sensitivity analysis of the residual stress state in friction stir welding of high strength aluminum alloy
  7. Probability of detection of minute defects by ultrasonic automated testing equipment in view of Bayesian inference
  8. Parameters in lock-in thermography of CFRP laminates
  9. Effect of tool material on microstructure and mechanical properties in friction stir welding
  10. Microstructures of an AZ61 wrought magnesium alloy fabricated by a novel SPD process using thermomechanical simulation
  11. Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70
  12. Effects of post-curing on the thermo-mechanical behavior and the chemical structure of highly filled phenolic molding compounds
  13. Effect of pressing temperature on the wear resistance of a Co-based Cr-Mo powder alloy produced by hot pressing
  14. Deep micro-hole drilling of Hardox 500 by electro-discharge machining
  15. Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm
  16. Structural design of vehicle components using gravitational search and charged system search algorithms
  17. Electrical resistivity and strength properties of sodium hydroxide contaminated soil solidified with cement
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110818/html
Scroll to top button