Sensitivity analysis of the residual stress state in friction stir welding of high strength aluminum alloy
-
Marcel Bachmann
Abstract
In this paper, the friction stir welding process was numerically investigated for 6 mm thick aluminum alloy AA2024-T3. The finite element software COMSOL Multiphysics was used to calculate the transient thermal field during welding and the mechanical reaction depending on different mechanical clamping conditions and hardening models subsequently. A thermal pseudo-mechanical (TPM) heat source was implemented. Softening effects of the material due to precipitation hardening dissolution caused by the frictional heat were accounted for. The transient temperature evolution measured by thermocouple elements at various locations was compared to the numerical results. A good agreement was found for the thermal field. A sensitivity study of the mechanical models showed the strong influence of the clamping conditions and the softening model.
Kurzfassung
In diesem Artikel wird der Rührreibschweißprozess für 6 mm dicke Bleche aus AA2024-T3 numerisch untersucht. Die Finite-Elemente-Software COMSOL Multiphysics wurde eingesetzt, um sowohl das transiente Temperaturfeld während des Schweißvorgangs, als auch die entstehenden mechanischen Spannungen für verschiedene Einspannbedingungen und Verfestigungsmodelle zu berechnen. Dabei wurde eine thermo-pseudo-mechanische (TPM) Wärmequelle genutzt. Entfestigungseffekte des Materials, verursacht durch die Reibwärme bedingte Auflösung der Ausscheidungshärtung beim Rührreibschweißen, wurden berücksichtigt. Die transiente Wärmeausbildung wurde mittels Thermoelementen an verschiedenen Positionen gemessen und mit den numerisch ermittelten Werten verglichen. Dabei wurde eine gute Übereinstimmung für das Temperaturfeld erzielt. Eine Sensitivitätsstudie der genutzten mechanischen Modelle zeigt den starken Einfluss der Einspannbedingungen sowie der Entfestigung.
References
1 W. M.Thomas, E. D.Nicholas, J. C.Needham, M. G.Murch, P.Temple-Smith, C. J.Dawes: Friction stir butt welding, International Patent Application No. PCT/GB92/02203, December 1991Search in Google Scholar
2 R. S.Mishra, Z. Y.Ma: Friction stir welding and processing, Materials Science and Engineering R50 (2005), pp. 1–7810.1016/j.mser.2005.07.001Search in Google Scholar
3 R.Nandan, T.Debroy, H. K. D. H.Bhadeshia: Recent advances in friction stir welding process, weldment structure and properties, Progress in Materials Science53 (2008), pp. 980–102310.1016/j.pmatsci.2008.05.001Search in Google Scholar
4 W. M.Thomas, E. D.Nicholas: Friction stir welding for the transportation industries, Materials & Design18 (1997), pp. 269–27310.1016/S0261-3069(97)00062-9Search in Google Scholar
5 Y. J.Chang, G.Sproesser, S.Neugebauer, K.Wolf, R.Scheumann, A.Pittner, M.Rethmeier, M.Finkbeiner: Environmental and social life cycle assessment of welding technologies, Procedia CIRP26 (2015), pp. 293–29810.1016/j.procir.2014.07.084Search in Google Scholar
6 T. U.Seidel, A. P.Reynolds: Two-dimensional friction stir welding process model based on fluid dynamics, Science and Technology of Welding and Joining8 (2003), pp. 175–18310.1179/136217103225010952Search in Google Scholar
7 P. A.Colegrove, H. R.Shercliff: CFD modeling of friction stir welding of thick plate 7449 aluminum alloy, Science and Technology of Welding and Joining11 (2006), pp. 429–44110.1179/174329306X107700Search in Google Scholar
8 H.Su, C. S.Wu, M.Bachmann, M.Rethmeier: Numerical modeling of the effect of pin profiles on thermal and material flow characteristics in friction stir welding, Materials & Design77 (2015), pp. 114–12510.1016/j.matdes.2015.04.012Search in Google Scholar
9 M. Z. H.Khandkar, J. A.Khan, A. P.Reynolds, M. A.Sutton: Predicting residual thermal stresses in friction stir welded metals, Journal of Materials Processing Technology174 (2006), pp. 195–20310.1016/j.jmatprotec.2005.12.013Search in Google Scholar
10 C. M.Chen, R.Kovacevic: Finite element modeling of friction stir welding – Thermal and thermomechanical analysis, International Journal of Machine Tools and Manufacture43 (2003), pp. 1319–132610.1016/S0890-6955(03)00158-5Search in Google Scholar
11 J. H.Hattel, M. R.Sonne, C. C.Tutum: Modelling residual stresses in friction stir welding of Al alloys – A review of possibilities and future trends, The International Journal of Advanced Manufacturing Technology76 (2015), pp. 1793–180510.1007/s00170-014-6394-2Search in Google Scholar
12 M. R.Sonne, C. C.Tutum, J. H.Hattel, A.Simar, B.De Meester: The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3, Journal of Materials Processing Technology213 (2013), pp. 477–48610.1016/j.jmatprotec.2012.11.001Search in Google Scholar
13 H. T.Serindag, B. G.Kiral, Z. A.Kadayifci: Finite element analysis of friction stir welded aluminum alloy AA6061-T6 joints, Materials Testing56 (2014), pp. 937–94410.3139/120.110653Search in Google Scholar
14 V.Richter-Trummer, E.Suzano, M.Beltrão, A.Roos, J. F.dos Santos, P. M. S. T.de Castro: Influence of the FSW clamping force on the final distortion and residual stress field, Materials Science and Engineering: A538 (2012), pp. 81–8810.1016/j.msea.2012.01.016Search in Google Scholar
15 P.Carlone, G. S.Palazzo: Longitudinal residual stress analysis in AA2024-T3 friction stir welding, Open Mechanical Engineering Journal7 (2013), pp. 18–2610.2174/1874155X01307010018Search in Google Scholar
16 H. B.Schmidt, J. H.Hattel: Thermal modelling of friction stir welding, Scripta Materialia58 (2008), pp. 332–33710.1016/j.scriptamat.2007.10.008Search in Google Scholar
17 M.Song, R.Kovacevic: Thermal modeling of friction stir welding in a moving coordinate system and its validation, International Journal of Machine Tools and Manufacture43 (2003), pp. 605–61510.1016/S0890-6955(03)00022-1Search in Google Scholar
18 J.Hilgert, H. N. B.Schmidt, J. F.dos Santos, N.Huber: Thermal models for bobbin tool friction stir welding, Journal of Materials Processing Technology211 (2011), pp. 197–20410.1016/j.jmatprotec.2010.09.006Search in Google Scholar
19 O. R.Myhr, Ø.Grong: Process modelling applied to 6082-T6 aluminium weldments – I. 3 10.1016/0956-7151(91)90085-F, II. Applications of model, Acta Metallurgica et Materialia 39 (1991), pp. 2693–270810.1016/0956-7151(91)90086-GSearch in Google Scholar
20 European Deepweld Project, Detailed multi-physics modelling of friction stir welding, Final Report (2008)Search in Google Scholar
21 J. R.Davis, ASM International: The ASM Specialty Handbook: Aluminium and Aluminium Alloys (1993)Search in Google Scholar
22 H.Su, C. S.Wu, A.Pittner, M.Rethmeier: Thermal energy generation and distribution in friction stir welding of aluminum alloys, Energy77 (2014), pp. 720–73110.1016/j.energy.2014.09.045Search in Google Scholar
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Quantification of vanadium precipitates in HSLA steel by synchrotron X-ray absorption spectroscopy (XAS)
- Optimization of the wear behavior of uncoated, TiN and AlTiN coated cold work tool steel 1.2379 using response surface methodology
- Sensitivity analysis of the residual stress state in friction stir welding of high strength aluminum alloy
- Probability of detection of minute defects by ultrasonic automated testing equipment in view of Bayesian inference
- Parameters in lock-in thermography of CFRP laminates
- Effect of tool material on microstructure and mechanical properties in friction stir welding
- Microstructures of an AZ61 wrought magnesium alloy fabricated by a novel SPD process using thermomechanical simulation
- Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70
- Effects of post-curing on the thermo-mechanical behavior and the chemical structure of highly filled phenolic molding compounds
- Effect of pressing temperature on the wear resistance of a Co-based Cr-Mo powder alloy produced by hot pressing
- Deep micro-hole drilling of Hardox 500 by electro-discharge machining
- Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm
- Structural design of vehicle components using gravitational search and charged system search algorithms
- Electrical resistivity and strength properties of sodium hydroxide contaminated soil solidified with cement
Articles in the same Issue
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Quantification of vanadium precipitates in HSLA steel by synchrotron X-ray absorption spectroscopy (XAS)
- Optimization of the wear behavior of uncoated, TiN and AlTiN coated cold work tool steel 1.2379 using response surface methodology
- Sensitivity analysis of the residual stress state in friction stir welding of high strength aluminum alloy
- Probability of detection of minute defects by ultrasonic automated testing equipment in view of Bayesian inference
- Parameters in lock-in thermography of CFRP laminates
- Effect of tool material on microstructure and mechanical properties in friction stir welding
- Microstructures of an AZ61 wrought magnesium alloy fabricated by a novel SPD process using thermomechanical simulation
- Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70
- Effects of post-curing on the thermo-mechanical behavior and the chemical structure of highly filled phenolic molding compounds
- Effect of pressing temperature on the wear resistance of a Co-based Cr-Mo powder alloy produced by hot pressing
- Deep micro-hole drilling of Hardox 500 by electro-discharge machining
- Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm
- Structural design of vehicle components using gravitational search and charged system search algorithms
- Electrical resistivity and strength properties of sodium hydroxide contaminated soil solidified with cement