Home Carbon nanotube-layered double hydroxide nanocomposites
Article
Licensed
Unlicensed Requires Authentication

Carbon nanotube-layered double hydroxide nanocomposites

  • Viktor Tóth EMAIL logo , Mónika Sipiczki , Valéria Bugris , Ákos Kukovecz , Zoltán Kónya , Pál Sipos and István Pálinkó
Published/Copyright: January 28, 2014
Become an author with De Gruyter Brill

Abstract

Preparation of multiwalled carbon nanotube-layered double hydroxide (MWCNT-LDH) nano-composites by (i) the co-precipitation of LDH components and pristine or surface-treated MWCNT or (ii) the delamination of LDH and application of the layer-by-layer technique has been attempted. For MWCNT, two types of surface treatment were used, either the surface was hydroxylated and deprotonated or wrapped in a tenside (dodecylbenzenesulfonate, DBS). LDH was delaminated by N,N-dimethylformamide. The obtained materials were characterized by X-ray diffractometry (XRD), and by scanning and transmission electron microscopies (SEM and TEM). Element distribution was mapped with help of the X-ray energy dispersive spectroscopy (XEDS) available as an extension of the scanning electron microscope. MWCNT could not be sandwiched between the layers of LDH by any of the methods employed; however, tenside-treated bundles of MWCNT could be wrapped in LDH thus forming a nanocomposite.

[1] Aisawa, S., Takahashi, S., Ogasawara, W., Umetsu, Y., & Narita, E. (2001). Direct intercalation of amino acids into layered double hydroxides by coprecipitation. Journal of Solid State Chemistry, 162, 52–62. DOI: 10.1006/jssc.2001.9340. http://dx.doi.org/10.1006/jssc.2001.934010.1006/jssc.2001.9340Search in Google Scholar

[2] Ambrogi, V., Fardella, G., Grandolini, G., & Perioli, L. (2001). Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents — I. Intercalation and in vitro release of ibuprofen. International Journal of Pharmaceutics, 220, 23–32. DOI: 10.1016/s0378-5173(01)00629-9. http://dx.doi.org/10.1016/S0378-5173(01)00629-910.1016/S0378-5173(01)00629-9Search in Google Scholar

[3] An, Z., Zhang, W. H., Shi, H. M., & He, J. (2006). An effective heterogeneous L-proline catalyst for the asymmetric aldol reaction using anionic clays as intercalated support. Journal of Catalysis, 241, 319–327. DOI: 10.1016/j.jcat.2006.04.035. http://dx.doi.org/10.1016/j.jcat.2006.04.03510.1016/j.jcat.2006.04.035Search in Google Scholar

[4] Brown, G., & Gastuche, M. C. (1967). Mixed magnesium-aluminium hydroxides. II. Structure and structural chemistry of synthetic hydroxycarbonates and related minerals and compounds. Clay Minerals, 7, 193–201. http://dx.doi.org/10.1180/claymin.1967.007.2.0610.1180/claymin.1967.007.2.06Search in Google Scholar

[5] Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcitetype anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173–301. DOI: 10.1016/0920-5861(91)80068-k. http://dx.doi.org/10.1016/0920-5861(91)80068-K10.1016/0920-5861(91)80068-KSearch in Google Scholar

[6] Choudary, B. M., Kavita, B., Chowdari, N. S., Sreedhar, B., & Kantam, M. L. (2002). Layered double hydroxides containing chiral organic guests: Synthesis, characterization and applications for asymmetric C-C bond-forming reactions. Catalysis Letters, 78, 373–377. DOI: 10.1023/a:1014941625580. http://dx.doi.org/10.1023/A:101494162558010.1023/A:1014941625580Search in Google Scholar

[7] Du, J., Wang, S. T., You, H., & Zhao, X. S. (2013). Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: A review. Environmental Toxicology and Pharmacology, 36, 451–462. DOI: 10.1016/j.etap.2013.05.007. http://dx.doi.org/10.1016/j.etap.2013.05.00710.1016/j.etap.2013.05.007Search in Google Scholar PubMed

[8] Duan, X., Lu, J., & Evans, G. D. (2011). Assembly chemistry of anion-intercalated layered materials. In R. R. Xu, W. Q. Pang, & Q. S. Huo (Eds.), Modern inorganic synthetic chemistry (pp. 375–404). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/b978-0-444-53599-3.10017-4. http://dx.doi.org/10.1016/B978-0-444-53599-3.10017-410.1016/B978-0-444-53599-3.10017-4Search in Google Scholar

[9] Dupuis, A. C. (2005). The catalyst in the CCVD of carbon nanotubes-a review. Progress in Materials Science, 50, 929–961. DOI: 10.1016/j.pmatsci.2005.04.003. http://dx.doi.org/10.1016/j.pmatsci.2005.04.00310.1016/j.pmatsci.2005.04.003Search in Google Scholar

[10] Evans, D. G., & Slade, R. C. T. (2006). Structural aspects of layered double hydroxides. Structure and Bonding, 119, 1–87. DOI: 10.1007/430 005. Search in Google Scholar

[11] He, J., Wei, M., Li, B., Kang, Y., Evans, D. G., & Duan, X. (2006). Preparation of layered double hydroxides. Structure and Bonding, 119, 89–119. DOI: 10.1007/430006. http://dx.doi.org/10.1007/430_006Search in Google Scholar

[12] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58. DOI: 10.1038/354056a0. http://dx.doi.org/10.1038/354056a010.1038/354056a0Search in Google Scholar

[13] Kim, T. H., Heo, I., Paek, S. M., Park, C. B., Choi, A. J., Lee, S. H., Choy, J. H., & Oh, J. M. (2012). Layered metal hydroxides containing calcium and their structural analysis. Bulletin of the Korean Chemical Society, 33, 1845–1850. DOI: 10.5012/bkcs.2012.33.6.1845. http://dx.doi.org/10.5012/bkcs.2012.33.6.184510.5012/bkcs.2012.33.6.1845Search in Google Scholar

[14] Li, L., Ma, R. Z., Ebina, Y., Iyi, N., & Sasaki, T. (2005). Positively charged nanosheets derived via total delamination of layered double hydroxides. Chemistry of Materials, 17, 4386–4391. DOI: 10.1021/cm0510460. http://dx.doi.org/10.1021/cm051046010.1021/cm0510460Search in Google Scholar

[15] Liu, Z. P., Ma, R. Z., Ebina, Y., Iyi, N., Takada, K., & Sasaki, T. (2007). General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. Langmuir, 23, 861–867. DOI: 10.1021/la062345m. http://dx.doi.org/10.1021/la062345m10.1021/la062345mSearch in Google Scholar

[16] Pálinkó, I. (2006). Organic-inorganic nanohybrids of biologically important molecules and layered double hydroxides. Nanopages, 1, 295–314. DOI: 10.1556/nano.1.2006.3.2. http://dx.doi.org/10.1556/NANO.1.2006.3.210.1556/NANO.1.2006.3.2Search in Google Scholar

[17] Rousselot, I., Taviot-Guého, C., Leroux, F., Léone, P., Palvadeau, P., & Besse, J. P. (2002). Insights on the structural chemistry of hydrocalumite and hydrotalcite-like materials: Investigation of the series Ca2M3+ (OH)6Cl ·2H2O (M3+: Al3+, Ga3+, Fe3+, and Sc3+) byX-ray powder diffraction. Journal of Solid State Chemistry, 167, 137–144. DOI: 10.1006/jssc.2002.9635. http://dx.doi.org/10.1006/jssc.2002.963510.1006/jssc.2002.9635Search in Google Scholar

[18] Shi, H. M., & He, J. (2011). Orientated intercalation of tartrate as chiral ligand to impact asymmetric catalysis. Journal of Catalysis, 279, 155–162. DOI: 10.1016/j.jcat.2011.01.012. http://dx.doi.org/10.1016/j.jcat.2011.01.01210.1016/j.jcat.2011.01.012Search in Google Scholar

[19] Srivastava, S., & Kotov, N. A. (2008). Composite layer-bylayer (LBL) assembly with inorganic nanoparticles and nanowires. Accounts of Chemical Research, 41, 1831–1841. DOI: 10.1021/ar8001377. http://dx.doi.org/10.1021/ar800137710.1021/ar8001377Search in Google Scholar

[20] Taylor, H. F. W. (1969). Segregation and cation-ordering in sjögrenite and pyroaurite. Mineralogical Magazine, 37, 338–342. DOI: 10.1180/minmag.1969.037.287.04. http://dx.doi.org/10.1180/minmag.1969.037.287.0410.1180/minmag.1969.037.287.04Search in Google Scholar

[21] Vaccari, A. (1998). Preparation and catalytic properties of cationic and anionic clays. Catalysis Today, 41, 53–71. DOI: 10.1016/s0920-5861(98)00038-8. http://dx.doi.org/10.1016/S0920-5861(98)00038-810.1016/S0920-5861(98)00038-8Search in Google Scholar

[22] Vieille, L., Moujahid, E. M., Taviot-Guého, C., Cellier, J., Besse, J. P., & Leroux, F. (2004). In situ polymerization of interleaved monomers: a comparative study between hydrotalcite and hydrocalumite host structures. Journal of Physics and Chemistry of Solids, 65, 385–393. DOI: 10.1016/j.jpcs.2003.08.029. http://dx.doi.org/10.1016/j.jpcs.2003.08.02910.1016/j.jpcs.2003.08.029Search in Google Scholar

[23] Zhao, M. Q., Zhang, Q., Huang, J. Q., & Wei, F. (2012). Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides — Properties, synthesis, and applications. Advanced Functional Materials, 22, 675–694. DOI: 10.1002/adfm.201102222. http://dx.doi.org/10.1002/adfm.20110222210.1002/adfm.201102222Search in Google Scholar

[24] Zümreoglu-Karan, B., & Ay, A. N. (2012). Layered double hydroxides — multifunctional nanomaterials. Chemical Papers, 66, 1–10. DOI: 10.2478/s11696-011-0100-8. http://dx.doi.org/10.2478/s11696-011-0100-810.2478/s11696-011-0100-8Search in Google Scholar

Published Online: 2014-1-28
Published in Print: 2014-5-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A spectrophotometric method for plant pigments determination and herbs classification
  2. Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite
  3. Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation
  4. Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers
  5. Effect of the preparation route on the structure and microstructure of LaCoO3
  6. Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex
  7. Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
  8. Synthesis and properties of CaAl-layered double hydroxides of hydrocalumite-type
  9. MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content
  10. Carbon nanotube-layered double hydroxide nanocomposites
  11. Synthesis of palladium-bidentate complex and its application in Sonogashira and Suzuki coupling reactions
  12. Reduction of nitroblue tetrazolium to formazan by folic acid
  13. Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations
  14. Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue
  15. Synthesis of [Re2Cl4(O)2(µ-O)(3,5-lut)4] and investigation of its structure via X-ray and spectroscopic measurements and DFT calculations
  16. QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches
  17. Influence of freezing on physicochemical forms of natural and technogenic radionuclides in Chernozem soil
  18. “Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0499-1/html?lang=en
Scroll to top button