Startseite Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants

  • Qamruzzaman EMAIL logo und Abu Nasar
Veröffentlicht/Copyright: 17. September 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The kinetics of the degradation of metribuzin by water-soluble colloidal MnO2 in acidic medium (HClO4) were studied spectrophotometrically in the absence and presence of surfactants. The experiments were performed under pseudo-first-order reaction conditions in respect of MnO2. The degradation was observed to be of the first order in respect of MnO2 while of fractional order for both metribuzin and HClO4. The rate constant for the degradation of metribuzin was observed to decrease as the concentration of MnO2 increased. The anionic surfactant, sodium dodecyl sulphate (SDS), was observed to be ineffective whereas the non-ionic surfactant, Triton X-100 (TX-100), accelerated the reaction rate. However, the cationic surfactant, cetyltrimethyl ammonium bromide (CTAB), caused flocculation with oppositely-charged colloidal MnO2; hence further study was not possible. The catalytic effect of TX-100 was discussed in the light of the available mathematical model. The kinetic data were exploited to generate the various activation parameters for the oxidative degradation of metribuzin by colloidal MnO2 in the absence as well as the presence of the non-ionic surfactant, TX-100.

[1] Aisha, U., Qamruzzaman, & Rafiquee, M. Z. A. (2011). Kinetics of reduction of colloidal MnO2 by glyphosate in aqueous and micellar media. International Journal of Inorganic Chemistry, 2011, 243519. DOI: 10.1155/2011/243519. http://dx.doi.org/10.1155/2011/24351910.1155/2011/243519Suche in Google Scholar

[2] Akram, M., Altaf, M.,& Kabir-Ud-Din (2011). Oxidative degradation of dipeptide (glycyl-glycine) by water soluble manganese dioxide in the aqueous and micellar media. Colloids and Surfaces B: Biointerfaces, 82, 217–223. DOI: 10.1016/j.colsurfb.2010.08.044. http://dx.doi.org/10.1016/j.colsurfb.2010.08.04410.1016/j.colsurfb.2010.08.044Suche in Google Scholar

[3] Akram, M., Altaf, M., Kabir-Ud-Din, & Al-Thabaiti, S. A. (2012). Kinetics and mechanism of the reduction of colloidal MnO2 by glycyl-leucine in the absence and presence of surfactants. Journal of Saudi Chemical Society, 16, 217–225. DOI: 10.1016/j.jscs. 2010.12.009. http://dx.doi.org/10.1016/j.jscs.2010.12.00910.1016/j.jscs.2010.12.009Suche in Google Scholar

[4] Alla, M. M. N., Badawi, A. M., Hassan, N. M., El-Bastawisy, Z. M.,& Badran, E. G. (2008). Effect of metribuzin, butachlor and chlorimuron-ethyl on amino acid and protein formation in wheat and maize seedlings. Pesticide Biochemistry and Physiology, 90, 8–18. DOI: 10.1016/j.pestbp.2007.07.003. http://dx.doi.org/10.1016/j.pestbp.2007.07.00310.1016/j.pestbp.2007.07.003Suche in Google Scholar

[5] Andrabi, S. M. Z.,& Khan, Z. (2005). Reduction of watersoluble colloidal manganese dioxide by thiourea: a kinetic and mechanistic study. Colloid and Polymer Science, 284, 36–43. DOI: 10.1007/s00396-005-1328-z. http://dx.doi.org/10.1007/s00396-005-1328-z10.1007/s00396-005-1328-zSuche in Google Scholar

[6] Ayranci, E.,& Hoda, N. (2004). Studies on removal of metribuzin, bromacil, 2,4-Dand atrazine from water by adsorption on high area carbon cloth. Journal of Hazardous Materials, 112, 163–168. DOI: 10.1016/j.jhazmat.2004.05.002. http://dx.doi.org/10.1016/j.jhazmat.2004.05.00210.1016/j.jhazmat.2004.05.002Suche in Google Scholar

[7] Benoit, P., Perceval, J., Stenrød, M., Moni, C., Eklo, O. M., Barriuso, E., Sveistrup, T.,& Kvaerner, J. (2007). Availability and biodegradation of metribuzin in alluvial soils as affected by temperature and soil properties. Weed Research, 47, 517–526. DOI: 10.1111/j.1365-3180.2007.00589.x. http://dx.doi.org/10.1111/j.1365-3180.2007.00589.x10.1111/j.1365-3180.2007.00589.xSuche in Google Scholar

[8] Buhl, K. J.,& Faerber, N. L. (1989). Acute toxicity of selected herbicides and surfactants to larvae of the midge Chironomus riparius. Archives of Environmental Contamination and Toxicology, 18, 530–536. DOI: 10.1007/bf01055019. http://dx.doi.org/10.1007/BF0105501910.1007/BF01055019Suche in Google Scholar

[9] Burrows, H. D., Canle, M. L., Santaballa, J. A.,& Steenken, S. (2002). Reaction pathways and mechanisms of photodegradation of pesticides. Journal of Photochemistry and Photobiology B: Biology, 67, 71–108. DOI. 10.1016/s1011-1344(02)00277-4. http://dx.doi.org/10.1016/S1011-1344(02)00277-410.1016/S1011-1344(02)00277-4Suche in Google Scholar

[10] Fairchild, J. F., Ruessler, D. S.,& Carlson, A. R. (1998). Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor. Environmental Toxicology and Chemistry, 17, 1830–1834. DOI: 10.1002/etc.5620170924. http://dx.doi.org/10.1002/etc.562017092410.1002/etc.5620170924Suche in Google Scholar

[11] Fairchild, J. F.,& Sappington, L. C. (2002). Fate and effects of the triazinone herbicide metribuzin in experimental pond mesocosms. Archives of Environmental Contamination and Toxicology, 43, 198–202. DOI: 10.1007/s00244-002-1208-1. http://dx.doi.org/10.1007/s00244-002-1208-110.1007/s00244-002-1208-1Suche in Google Scholar PubMed

[12] Fountoulakis, M. S., Makridis, L., Pirounki, E. K., Chroni, C., Kyriacou, A., Lasaridi, K.,& Manios, T. (2010). Fate and effect of linuron and metribuzin on the co-composting of green waste and sewage sludge. Waste Management, 30, 41–49. DOI: 10.1016/j.wasman.2009.08.014. http://dx.doi.org/10.1016/j.wasman.2009.08.01410.1016/j.wasman.2009.08.014Suche in Google Scholar PubMed

[13] Getenga, Z. M., Madadi, V.,& Wandiga, S. O. (2004). Studies on biodegradation of 2,4-D and metribuzin in soil under controlled conditions. Bulletin of Environmental Contamination and Toxicology, 72, 504–513. DOI: 10.1007/s00128-004-0273-8. http://dx.doi.org/10.1007/s00128-004-0273-810.1007/s00128-004-0273-8Suche in Google Scholar PubMed

[14] Gopal, M., Dutta, D., Jha, S. K., Kalra, S., Bandyopadhyay, S.,& Das, S. K. (2011). Biodegradation of imidacloprid and metribuzin by Burkholderia cepacia strain CH9. Pesticide Research Journal, 23, 36–40. Suche in Google Scholar

[15] Kabir-Ud-Din, Fatma, W.,& Khan, Z. (2004). Effect of surfactants on the oxidation of oxalic acid by soluble colloidal MnO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 234, 159–164. DOI: 10.1016/j.colsurfa.2003. 12.015. http://dx.doi.org/10.1016/j.colsurfa.2003.12.01510.1016/j.colsurfa.2003.12.015Suche in Google Scholar

[16] Kabir-Ud-Din, Iqubal, S. M. S.,& Khan, Z. (2005). Effect of ionic and non-ionic surfactants on the reduction of water soluble colloidal MnO2 by glycolic acid. Colloid and Polymer Science, 284, 276–283. DOI: 10.1007/s00396-005-1373-7. http://dx.doi.org/10.1007/s00396-005-1373-710.1007/s00396-005-1373-7Suche in Google Scholar

[17] Kabir-Ud-Din, Zaidi, N. H., Akram, M.,& Khan, Z. (2006). Mechanism of the oxidation of D-glucose onto colloidal MnO2 surface in the absence and presence of TX-100 micelles. Colloid and Polymer Science, 284, 1387–1393. DOI: 10.1007/s00396-006-1507-6. http://dx.doi.org/10.1007/s00396-006-1507-610.1007/s00396-006-1507-6Suche in Google Scholar

[18] Kabir-Ud-Din, & Iqubal, S. M. S. (2010). Kinetics of the reduction of water soluble colloidal MnO2 by mandelic acid in the absence and presence of non-ionic surfactant Triton X-100. Colloid Journal, 72, 195–204. DOI: 10.1134/s1061933x10020080. http://dx.doi.org/10.1134/S1061933X1002008010.1134/S1061933X10020080Suche in Google Scholar

[19] Khan, Z., Kumar, P.,& Kabir-Ud-Din (2004). Kinetics and mechanism of the reduction of colloidal manganese dioxide by D-fructose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 248, 25–31. DOI: 10.1016/j.colsurfa.2004.08.020. http://dx.doi.org/10.1016/j.colsurfa.2004.08.02010.1016/j.colsurfa.2004.08.020Suche in Google Scholar

[20] Khoury, R., Coste, C. M.,& Kawar, N. S. (2006). Degradation of metribuzin in two soil types of Lebanon. Journal of Environmental Science and Health, Part B, 41, 795–806. DOI: 10.1080/03601230600805790. http://dx.doi.org/10.1080/0360123060080579010.1080/03601230600805790Suche in Google Scholar PubMed

[21] Kitous, O., Cheikh, A., Lounici, H., Grib, H., Pauss, A.,& Mameri, N. (2009). Application of the electrosorption technique to remove Metribuzin pesticide. Journal of Hazardous Materials, 161, 1035–1039. DOI: 10.1016/j.jhazmat.2008.04.091. http://dx.doi.org/10.1016/j.jhazmat.2008.04.09110.1016/j.jhazmat.2008.04.091Suche in Google Scholar PubMed

[22] Kitous, O., Hamadou, H., Lounici, H., Drouiche, N.,& Mameri, N. (2012). Metribuzin removal with electro-activated granular carbon. Chemical Engineering and Processing: Process Intensification, 55, 20–23. DOI:10.1016/j.cep.2012.02.005. http://dx.doi.org/10.1016/j.cep.2012.02.00510.1016/j.cep.2012.02.005Suche in Google Scholar

[23] Kjaer, J., Olsen, D., Henriksen, T.,& Ullum, M. (2005). Leaching of metribuzin metabolites and the associated contamination of a sandy Danish aquifer. Environmental Science & Technology, 39, 8374–8381. DOI: 10.1021/es0506758. http://dx.doi.org/10.1021/es050675810.1021/es0506758Suche in Google Scholar

[24] Medjdoub, A., Merzouk, S. A., Merzouk, H., Chiali, F. Z.,& Narce, M. (2011). Effects of Mancozeb and Metribuzin on in vitro proliferative responses and oxidative stress of human and rat spleen lymphocytes stimulated by mitogens. Pesticide Biochemistry and Physiology, 101, 27–33. DOI: 10.1016/j.pestbp.2011.06.002. http://dx.doi.org/10.1016/j.pestbp.2011.06.00210.1016/j.pestbp.2011.06.002Suche in Google Scholar

[25] Mulbah, C. K., Porthouse, J. D., Jugsujinda, A., de Laune, R. D.,& Johnson, A. B. (2000). Impact of redox conditions on metolachlor and metribuzin degradation in Mississippi flood plain soils. Journal of Environmental Science and Health, Part B, 35, 689–704. DOI: 10.1080/03601230009373302. http://dx.doi.org/10.1080/0360123000937330210.1080/03601230009373302Suche in Google Scholar

[26] Muszkat, L., Feigelson, L., Bir, L.,& Muszkat, K. A. (1998). Reaction patterns in photooxidative degradation of two herbicides. Chemosphere, 36, 1485–1492. DOI: 10.1016/s0045-6535(97)10047-9. http://dx.doi.org/10.1016/S0045-6535(97)10047-910.1016/S0045-6535(97)10047-9Suche in Google Scholar

[27] Ort, M. P., Fairchild, J. F.,& Finger, S. E. (1994). Acute and chronic effects of four commercial herbicide formulations on Ceriodaphnia dubia. Archives of Environmental Contamination and Toxicology, 27, 103–106. DOI: 10.1007/bf00203894. http://dx.doi.org/10.1007/BF0020389410.1007/BF00203894Suche in Google Scholar

[28] Perez-Benito, J. F.,& Arias, C. (1992). A kinetic study of the reaction between soluble (colloidal) manganese dioxide and formic acid. Journal of Colloid and Interface Science, 149, 92–97. DOI: 10.1016/0021-9797(92)90394-2. http://dx.doi.org/10.1016/0021-9797(92)90394-210.1016/0021-9797(92)90394-2Suche in Google Scholar

[29] Perez-Benito, J. F., Arias, C.,& Amat, E. (1996). A kinetic study of the reduction of colloidal manganese dioxide by oxalic acid. Journal of Colloid and Interface Science, 177, 288–297. DOI: 10.1006/jcis.1996.0034. http://dx.doi.org/10.1006/jcis.1996.003410.1006/jcis.1996.0034Suche in Google Scholar

[30] Qamruzzaman, & Nasar, A. (2012). Degradation of methomyl by colloidal manganese dioxide in acidic medium. Chemical Science Review and Letters, 1, 113–119. Suche in Google Scholar

[31] Raschke, U., Werner, G., Wilde, H.,& Stottmeister, U. (1998a). Photolysis of metribuzin in oxygenated aqueous solutions. Chemosphere, 36, 1745–1758. DOI: 10.1016/s0045-6535(97)10069-8. http://dx.doi.org/10.1016/S0045-6535(97)10069-810.1016/S0045-6535(97)10069-8Suche in Google Scholar

[32] Raschke, U., Werner, G., Wilde, H.,& Stottmeister, U. (1998b). Photodecomposition of 4-amino-1,2,4-triazine-3,5-diones and -thiones in oxygenated aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 115, 191–197. DOI: 10.1016/s1010-6030(98)00265-2. http://dx.doi.org/10.1016/S1010-6030(98)00265-210.1016/S1010-6030(98)00265-2Suche in Google Scholar

[33] Singh, N. (2009). Adsorption of herbicides on coal fly ash from aqueous solutions. Journal of Hazardous Materials, 168, 233–237. DOI: 10.1016/j.jhazmat.2009.02.016. http://dx.doi.org/10.1016/j.jhazmat.2009.02.01610.1016/j.jhazmat.2009.02.016Suche in Google Scholar

[34] Soltani, N., Deen, B., Bowley, S.,& Sikkema, P. H. (2005). Effects of pre-emergence applications of flufenacet plus metribuzin on weeds and soybean (Glycine max). Crop Protection, 24, 507–511. DOI: 10.1016/j.cropro.2004.09.018. http://dx.doi.org/10.1016/j.cropro.2004.09.01810.1016/j.cropro.2004.09.018Suche in Google Scholar

[35] Tunçay, M., Yüce, N., Arlkan, B., & Göktürk, S. (1999). A kinetic study of the reaction between colloidal manganese dioxide and formic acid in aqueous perchloric acid solution in the presence of surface active agents. Colloids and Surfaces A: Physiochemical and Engineering Aspects, 149, 279–284. DOI: 10.1016/s0927-7757(98)00520-2. http://dx.doi.org/10.1016/S0927-7757(98)00520-210.1016/S0927-7757(98)00520-2Suche in Google Scholar

[36] Webb, K. M.,& Aylmore, L. A. G. (2002). The role of soil organic matter and water potential in determining pesticide degradation. Developments in Soil Science, 28A, 117–125. DOI: 10.1016/s0166-2481(02)80048-4. http://dx.doi.org/10.1016/S0166-2481(02)80048-410.1016/S0166-2481(02)80048-4Suche in Google Scholar

[37] Webster, G. R. B., Sarna, L. P.,& Macdonald, S. R. (1978). Nonbiological degradation of the herbicide metribuzin in manitoba soils. Bulletin of Environmental Contamination and Toxicology, 20, 401–408. DOI: 10.1007/bf01683538. http://dx.doi.org/10.1007/BF0168353810.1007/BF01683538Suche in Google Scholar PubMed

[38] Yahiaoui, O., Aizel, L., Lounici, H., Drouiche, N., Goosen, M. F. A., Pauss, A.,& Mameri, N. (2011). Evaluating removal of metribuzin pesticide from contaminated groundwater using an electrochemical reactor combined with ultraviolet oxidation. Desalination, 270, 84–89. DOI: 10.1016/j.desal.2010.11.025. http://dx.doi.org/10.1016/j.desal.2010.11.02510.1016/j.desal.2010.11.025Suche in Google Scholar

Published Online: 2013-9-17
Published in Print: 2014-1-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Immobilisation of Clostridium spp. for production of solvents and organic acids
  2. A multi-analytical approach to amber characterisation
  3. Performance and lifetime of slurry packed capillary columns for high performance liquid chromatography
  4. Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS
  5. In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols
  6. 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides — inhibitors of photosynthesis
  7. Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules
  8. Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants
  9. Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?
  10. Equilibrium of chiral extraction of 4-nitro-d,l-phenylalanine with BINAP metal complexes
  11. Influence of superplasticizers on the course of Portland cement hydration
  12. Effect of valence of copper on adsorption of dimethyl sulfide from liquid hydrocarbon streams on activated bentonite
  13. Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution
  14. Effect of exopolymeric substances on the kinetics of sorption and desorption of trivalent chromium in soil
  15. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols
  16. Kinetics of chloride substitution in [Pt(bpma)Cl]+ and [Pt(gly-met-S,N,N)Cl] complexes by thiourea, nitrites, and iodides
  17. Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing
  18. Theoretical investigation on the reaction of HS+ with CH3NH2
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0424-7/html?lang=de
Button zum nach oben scrollen