Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules
Abstract
Biotransformation of iminodiacetonitrile (IDAN) to iminodiacetic acid (IDA) was investigated with a newly isolated Alcaligenes faecalis ZJUTBX11 strain showing nitrilase activity in the immobilized form. To reduce the mass transfer resistance and to increase the toleration ability of the microorganisms to the toxic substrate as well as to enhance their ability to be reused, encapsulation of the whole cells in alginate-chitosan-alginate (ACA) membrane liquid-core capsules was attempted in the present study. The optimal pH and temperature for nitrilase activity of encapsulated A. faecalis ZJUTBX11 cells were 7.5°C and 35°C, respectively, which is consistent with free cells. Based on the Michaelis-Menten model, kinetic parameters of the conversion reaction with IDAN as the substrate were: K m = (17.6 ± 0.3) mmol L−1 and V max = (97.6 ± 1.2) μmol min−1 g−1 of dry cell mass for encapsulated cells and (16.8 ± 0.4) mmol L−1 and (108.0 ± 2.7) μmol min−1 g−1 of dry cell mass for free cells, respectively. After being recycled ten times, the whole cells encapsulated in ACA capsules still retained 90 % of the initial nitrilase activity while only 35 % were retained by free cells. Lab scale production of IDA using encapsulated cells in a bubble column reactor and a packed bed reactor were performed respectively.
[1] Banerjee, A., Sharma, R., & Banerjee, U. C. (2002). The nitrile-degrading enzymes: current status and future prospects. Applied Microbiology and Biotechnology, 60, 33–44. DOI: 10.1007/s00253-002-1062-0. http://dx.doi.org/10.1007/s00253-002-1062-010.1007/s00253-002-1062-0Suche in Google Scholar
[2] Banerjee, A., Kaul, P., & Banerjee, U. C. (2006). Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Applied Microbiology and Biotechnology, 72, 77–87. DOI: 10.1007/s00253-005-0255-8. http://dx.doi.org/10.1007/s00253-005-0255-810.1007/s00253-005-0255-8Suche in Google Scholar
[3] Bučko, M., Vikartovská, A., Lacík, I., Kolláriková, G., Gemeiner, P., Pätoprst & Brygin, M. (2005). Immobilization of a whole-cell epoxide-hydrolyzing biocatalyst in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine) capsules using a controlled encapsulation process. Enzyme and Microbial Technology, 36, 118–126. DOI: 10.1016/j.enzmictec.2004.07.006. http://dx.doi.org/10.1016/j.enzmictec.2004.07.00610.1016/j.enzmictec.2004.07.006Suche in Google Scholar
[4] Chang, P. L., Hortelano, G., Awrey, D. E., & Tse, M. (1994). Growth of recombinant fibroblasts in alginate microcapsules. Biotechnology and Bioengineering, 43, 925–933. DOI: 10.1002/bit.260431005. http://dx.doi.org/10.1002/bit.26043100510.1002/bit.260431005Suche in Google Scholar
[5] Chen, J., Zheng, Y. G., & Shen, Y. C. (2008). Biotransformation of p-methoxyphenylacetonitrile into p-methoxyphenylacetic acid by resting cells of Bacillus subtilis. Biotechnology and Applied Biochemistry, 50, 147–153. DOI: 10.1042/ba20070106. http://dx.doi.org/10.1042/BA2007010610.1042/BA20070106Suche in Google Scholar
[6] Dembczynski, R., & Jankowski, T. (2000). Characterisation of small molecules diffusion in hydrogel-membrane liquid-core capsules. Biochemical Engineering Journal, 6, 41–44. DOI: 10.1016/s1369-703x(00)00070-x. http://dx.doi.org/10.1016/S1369-703X(00)00070-X10.1016/S1369-703X(00)00070-XSuche in Google Scholar
[7] Förster, M., Mansfeld, J., Dautzenberg, H., & Schellenberger, A. (1996). Immobilization in polyelectrolyte complex capsules: Encapsulation of a gluconate-oxidizing Serratia marcescens strain. Enzyme and Microbial Technology, 19, 572–577. DOI: 10.1016/0141-0229(95)00193-x. http://dx.doi.org/10.1016/0141-0229(95)00193-X10.1016/0141-0229(95)00193-XSuche in Google Scholar
[8] Gugerli, R., Cantana, E., Heinzen, C., von Stockar, U., & Marison, I. W. (2002). Quantitative study of the production and properties of alginate/poly-l-lysine microcapsules. Journal of Microencapsulation, 19, 571–590. DOI: 10.1080/02652040210140490. http://dx.doi.org/10.1080/0265204021014049010.1080/02652040210140490Suche in Google Scholar PubMed
[9] He, Y. C., Zhang, Z. J., Xu, J. H., & Liu, Y. Y. (2010). Biocatalytic synthesis of (R)-(−)-mandelic acid from racemic mandelonitrile by cetyltrimethylammonium bromide-permeabilized cells of Alcaligenes faecalis ECU0401. Journal of Industrial Microbiology & Biotechnology, 37, 741–750. DOI: 10.1007/s10295-010-0720-y. http://dx.doi.org/10.1007/s10295-010-0720-y10.1007/s10295-010-0720-ySuche in Google Scholar PubMed
[10] He, Y. C., Liu, Y. Y., Ma, C. L., & Xu, J. H. (2011). Modified ferric hydroxamate spectrophotometry for assaying glycolic acid from the hydrolysis of glycolonitrile by Rhodococcus sp CCZU10−1. Biotechnology and Bioprocess Engineering, 16, 901–907. DOI: 10.1007/s12257-011-0156-x. http://dx.doi.org/10.1007/s12257-011-0156-x10.1007/s12257-011-0156-xSuche in Google Scholar
[11] Huang, H. R., & Xu, J. H. (2006). Preparation of (S)-mandelic acid from racemate using growing cells of Pseudomonas putida ECU1009 with (R)-mandelate degradation activity. Biochemical Engineering Journal, 30, 11–15. DOI: 10.1016/j.bej.2006.01.010. http://dx.doi.org/10.1016/j.bej.2006.01.01010.1016/j.bej.2006.01.010Suche in Google Scholar
[12] Jin, L. Q., Liu, Z. Q., Xu, J. M., & Zheng, Y. G. (2013). Biosynthesis of nicotinic acid from 3-cyanopyridine by a newly isolated Fusarium proliferatum ZJB-09150. World Journal of Microbiology & Biotechnology, 29, 431–440. DOI: 10.1007/s11274-012-1195-y. http://dx.doi.org/10.1007/s11274-012-1195-y10.1007/s11274-012-1195-ySuche in Google Scholar PubMed
[13] Kabaivanova, L., Dobreva, E., Dimitrov, P., & Emanuilova, E. (2005). Immobilization of cells with nitrilase activity from a thermophilic bacterial strain. Journal of Industrial Microbiology and Biotechnology, 32, 7–11. DOI: 10.1007/s10295-004-0189-7. http://dx.doi.org/10.1007/s10295-004-0189-710.1007/s10295-004-0189-7Suche in Google Scholar PubMed
[14] Kaul, P., Banerjee, A., & Banerjee, U. C. (2006). Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules, 7, 1536–1541. DOI: 10.1021/bm0507913. http://dx.doi.org/10.1021/bm050791310.1021/bm0507913Suche in Google Scholar PubMed
[15] Kobayashi, M., Yanaka, N., Nagasawa, T., & Yamada, H. (1990). Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. Journal of Bacteriology, 172, 4807–4815. 10.1128/jb.172.9.4807-4815.1990Suche in Google Scholar PubMed PubMed Central
[16] Kuan, I. C., Wu, J. C., Lee, S. L., Tsai, C. W., Chuang, C. A., & Yu, C. Y. (2010). Stabilization of d-amino acid oxidase from Rhodosporidium toruloides by encapsulation in polyallylamine-mediated biomimetic silica. Biochemical Engineering Journal, 49, 408–413. DOI: 10.1016/j.bej.2010.02.003. http://dx.doi.org/10.1016/j.bej.2010.02.00310.1016/j.bej.2010.02.003Suche in Google Scholar
[17] Kurillova, L., Gemeiner, P., Vikartovska, A., Mikova, H., Rosenberg, M., & Ilavsky, M. (2000). Calcium pectate gel beads for cell entrapment. 6. Morphology of stabilized and hardened calcium pectate gel beads with cells for immobilized biotechnology. Journal of Microencapsulation, 17, 279–296. DOI: 10.1080/026520400288265. http://dx.doi.org/10.1080/02652040028826510.1080/026520400288265Suche in Google Scholar PubMed
[18] Léonard, A., Dandoy, P., Danloy, E., Leroux, G., Meunier, C. F., Rooke, J. C., & Su, B. L. (2011). Whole-cell based hybrid materials for green energy production, environmental reme diation and smart cell-therapy. Chemical Society Reviews, 40, 860–885. DOI: 10.1039/c0cs00024h. http://dx.doi.org/10.1039/c0cs00024h10.1039/c0cs00024hSuche in Google Scholar PubMed
[19] Liese, A., Seelbach, K., Wandrey, C., Rao, N. N., Lütz, S., Seelbach, K., & Liese, A. (2006). Basics of bioreaction engineering. In A. Liese, K. Seelbach, and C. Wandrey (Eds.), Industrial biotransformations (pp. 57–91). Weinheim, Germany: Wiley. DOI: 10.1002/9783527608188.ch5. http://dx.doi.org/10.1002/352760818410.1002/9783527608188.ch5Suche in Google Scholar
[20] Lin, J. Z., Yu, W. T., Liu, X. D., Xie, H.G., Wang, W., & Ma, X. J. (2008). In Vitro and in Vivo characterization of alginate-chitosan-alginate artificial microcapsules for therapeutic oral delivery of live bacterial cells. Journal of Bioscience and Bioengineering, 105, 660–665. DOI: 10.1263/jbb.105.660. http://dx.doi.org/10.1263/jbb.105.66010.1263/jbb.105.660Suche in Google Scholar PubMed
[21] Liu, Z. Q., Dong, L. Z., Cheng, F., Xue, Y. P., Wang, Y. S., Ding, J. N., Zheng, Y. G., & Shen, Y. C. (2011a). Gene cloning, expression, and characterization of a nitrilase from Alcaligenes faecalis ZJUTB10. Journal of Agricultural and Food Chemistry, 59, 11560–11570. DOI: 10.1021/jf202746a. http://dx.doi.org/10.1021/jf202746a10.1021/jf202746aSuche in Google Scholar
[22] Liu, Z. Q., Li, F. F., Cheng, F., Zhang, T., You, Z. Y., Xu, J. M., Xue, Y. P., Zheng, Y. G., & Shen, Y. C. (2011b). A novel synthesis of iminodiacetic acid: Biocatalysis by whole Alcaligenes faecalis ZJB-09133 cells from iminodiacetonitrile. Biotechnology Progress, 27, 698–705. DOI: 10.1002/btpr.603. http://dx.doi.org/10.1002/btpr.60310.1002/btpr.603Suche in Google Scholar
[23] Liu, Z. Q., Zhou, M., Zhang, X. H., Xu, J. M., Xue, Y. P., & Zheng, Y. G. (2012). Biosynthesis of iminodiacetic acid from iminodiacetonitrile by immobilized recombinant Escherichia coli harboring nitrilase. Journal of Molecular Microbiology and Biotechnology, 22, 35–47. DOI: 10.1159/000337055. http://dx.doi.org/10.1159/00033705510.1159/000337055Suche in Google Scholar
[24] Martínková, L., & Křen, V. (2010). Biotransformations with nitrilases. Current Opinion in Chemical Biology, 14, 130–137. DOI: 10.1016/j.cbpa.2009.11.018. http://dx.doi.org/10.1016/j.cbpa.2009.11.01810.1016/j.cbpa.2009.11.018Suche in Google Scholar
[25] Nagasawa, T., Mauger, J., & Yamada, H. (1990). A novel nitrilase, arylacetonitrilase, of Alcaligenes Faecalis JM3. Purification and characterization. European Journal of Biochemistry, 194, 765–772. DOI: 10.1111/j.1432-1033.1990.tb19467.x. http://dx.doi.org/10.1111/j.1432-1033.1990.tb19467.x10.1111/j.1432-1033.1990.tb19467.xSuche in Google Scholar
[26] Nigam, V. K., Khandelwal, A. K., Gothwal, R. K., Mohan, M. K., Choudhury, B., Vidyarthi, A. S., & Ghosh, P. (2009). Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp. Journal of Biosciences, 34, 21–26. DOI: 10.1007/s12038-009-0005-7. http://dx.doi.org/10.1007/s12038-009-0005-710.1007/s12038-009-0005-7Suche in Google Scholar
[27] O’Reilly, C., & Turner, P. D. (2003). The nitrilase family of CN hydrolysing enzymes — a comparative study. Journal of Applied Microbiology, 95, 1161–1174. DOI: 10.1046/j.1365-2672.2003.02123.x. http://dx.doi.org/10.1046/j.1365-2672.2003.02123.x10.1046/j.1365-2672.2003.02123.xSuche in Google Scholar
[28] Osprian, I., Jarret, C., Strauss, U., Kroutil, W., Orru, R. V. A., Felfer, U., Willetts, A. J., & Faber, K. (1999). Large-scale preparation of a nitrile-hydrolysing biocatalyst: Rhodococcus R 312 (CBS 717.73). Journal of Molecular Catalysis B: Enzymatic, 6, 555–560. DOI: 10.1016/s1381-1177(99)00009-0. http://dx.doi.org/10.1016/S1381-1177(99)00009-010.1016/S1381-1177(99)00009-0Suche in Google Scholar
[29] Park, J. K., Jin, Y. B., & Chang, H. N. (1999). Reusable biosorbents in capsules from Zoogloea ramigera cells for cadmium removal. Biotechnology and Bioengineering, 63, 116–121. DOI: 10.1002/(sici)1097-0290(19990405)63:1<116::aidbit12>3.0.co;2-k. http://dx.doi.org/10.1002/(SICI)1097-0290(19990405)63:1<116::AID-BIT12>3.0.CO;2-K10.1002/(SICI)1097-0290(19990405)63:1<116::AID-BIT12>3.0.CO;2-KSuche in Google Scholar
[30] Park, J. K., & Chang, H. N. (2000). Microencapsulation of microbial cells. Biotechnology Advances, 18, 303–319. DOI: 10.1016/s0734-9750(00)00040-9. http://dx.doi.org/10.1016/S0734-9750(00)00040-910.1016/S0734-9750(00)00040-9Suche in Google Scholar
[31] Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., & Witholt, B. (2001). Industrial biocatalysis today and tomorrow. Nature, 409, 258–268. DOI: 10.1038/35051736. http://dx.doi.org/10.1038/3505173610.1038/35051736Suche in Google Scholar
[32] Shukla, V. B., Veera, U. P., Kulkarni, P. R., & Pandit, A. B. (2001). Scale-up of biotransformation process in stirred tank reactor using dual impeller bioreactor. Biochemical Engineering Journal, 8, 19–29. DOI: 10.1016/s1369-703x(00)00130-3. http://dx.doi.org/10.1016/S1369-703X(00)00130-310.1016/S1369-703X(00)00130-3Suche in Google Scholar
[33] Sosedov, O., Matzer, K., Bürger, S., Kiziak, C., Baum, S., Altenbuchner, J., Chmura, A., van Rantwijk, F., & Stolz, A. (2009). Construction of recombinant Escherichia coli catalysts which simultaneously express an (S)-oxynitrilase and different nitrilase variants for the synthesis of (S)-mandelic acid and (S)-mandelic amide from benzaldehyde and cyanide. Advanced Synthesis & Catalysis, 351, 1531–1538. DOI: 10.1002/adsc.200900087. http://dx.doi.org/10.1002/adsc.20090008710.1002/adsc.200900087Suche in Google Scholar
[34] Stormo, K. E., & Crawford, R. L. (1992). Preparation of encapsulated microbial cells for environmental applications. Applied and Environmental Microbiology, 58, 727–730. 10.1128/aem.58.2.727-730.1992Suche in Google Scholar
[35] Straathof, A. J., Panke, S., & Schmid, A. (2002). The production of fine chemicals by biotransformations. Current Opinion in Biotechnology, 13, 548–556. DOI: 10.1016/s0958-1669(02)00360-9. http://dx.doi.org/10.1016/S0958-1669(02)00360-910.1016/S0958-1669(02)00360-9Suche in Google Scholar
[36] Woodburn, A. T. (2000). Glyphosate: production, pricing and use worldwide. Pest Management Science, 56, 309–312. DOI: 10.1002/(sici)1526-4998(200004)56:4<309::aid-ps143>3.3.co;2-3. http://dx.doi.org/10.1002/(SICI)1526-4998(200004)56:4<309::AID-PS143>3.0.CO;2-C10.1002/(SICI)1526-4998(200004)56:4<309::AID-PS143>3.0.CO;2-CSuche in Google Scholar
[37] Xu, S. K., Qu, Y. H., Chaouki, J., & Guy, C. (2005). Characterization of homogeneity of bubble flows in bubble columns using RPT and fibre optics. International Journal of Chemical Reactor Engineering, 3, A54. DOI: 10.2202/1542-6580.1264. http://dx.doi.org/10.2202/1542-6580.126410.2202/1542-6580.1264Suche in Google Scholar
[38] Xue, Y. P., Liu, Z. Q., Xu, M., Wang, Y. J., Zheng, Y. G., & Shen, Y. C. (2010). Enhanced biotransformation of (R,S)-mandelonitrile to (R)-(-)-mandelic acid with in situ production removal by addition of resin. Biochemical Engineering Journal, 53, 143–149. DOI: 10.1016/j.bej.2010.10.009. http://dx.doi.org/10.1016/j.bej.2010.10.00910.1016/j.bej.2010.10.009Suche in Google Scholar
[39] Xue, Y. P., Liu, Z. Q., Xu, M., Wang, Y. J., & Zheng, Y. G. (2011). Efficient separation of (R)-(-)-mandelic acid biosynthesized from (R,S)-mandelonitrile by nitrilase using ion-exchange process. Journal of Chemical Technology and Biotechnology, 86, 391–397. DOI: 10.1002/jctb.2528. http://dx.doi.org/10.1002/jctb.252810.1002/jctb.2528Suche in Google Scholar
[40] Zhang, Z. J., Xu, J. H., He, Y. C., Ouyang, L. M., & Liu, Y. Y. (2011). Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp ECU0401 and its potential for (R)-(-)-mandelic acid production. Bioprocess and Biosystems Engineering, 34, 315–322. DOI: 10.1007/s00449-010-0473-z. http://dx.doi.org/10.1007/s00449-010-0473-z10.1007/s00449-010-0473-zSuche in Google Scholar PubMed
[41] Zhang, J. F., Liu, Z. Q., Zheng, Y. G., & Shen, Y. C. (2012). Screening and characterization of microorganisms capable of converting iminodiacetonitrile to iminodiacetic acid. Engineering in Life Sciences, 12, 69–78. DOI: 10.1002/elsc.201100090. http://dx.doi.org/10.1002/elsc.20110009010.1002/elsc.201100090Suche in Google Scholar
[42] Zhang, J. F., Liu, Z. Q., & Zheng, Y. G. (2013). Improvement of nitrilase production from a newly isolated Alcaligenes faecalis mutant for biotransformation of iminodiacetonitrile to iminodiacetic acid. Journal of the Taiwan Institute of Chemical Engineers, 44, 169–176. DOI: 10.1016/j.jtice.2012.11.010. http://dx.doi.org/10.1016/j.jtice.2012.11.01010.1016/j.jtice.2012.11.010Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Immobilisation of Clostridium spp. for production of solvents and organic acids
- A multi-analytical approach to amber characterisation
- Performance and lifetime of slurry packed capillary columns for high performance liquid chromatography
- Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS
- In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols
- 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides — inhibitors of photosynthesis
- Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules
- Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants
- Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?
- Equilibrium of chiral extraction of 4-nitro-d,l-phenylalanine with BINAP metal complexes
- Influence of superplasticizers on the course of Portland cement hydration
- Effect of valence of copper on adsorption of dimethyl sulfide from liquid hydrocarbon streams on activated bentonite
- Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution
- Effect of exopolymeric substances on the kinetics of sorption and desorption of trivalent chromium in soil
- Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols
- Kinetics of chloride substitution in [Pt(bpma)Cl]+ and [Pt(gly-met-S,N,N)Cl] complexes by thiourea, nitrites, and iodides
- Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing
- Theoretical investigation on the reaction of HS+ with CH3NH2
Artikel in diesem Heft
- Immobilisation of Clostridium spp. for production of solvents and organic acids
- A multi-analytical approach to amber characterisation
- Performance and lifetime of slurry packed capillary columns for high performance liquid chromatography
- Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS
- In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols
- 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides — inhibitors of photosynthesis
- Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules
- Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants
- Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?
- Equilibrium of chiral extraction of 4-nitro-d,l-phenylalanine with BINAP metal complexes
- Influence of superplasticizers on the course of Portland cement hydration
- Effect of valence of copper on adsorption of dimethyl sulfide from liquid hydrocarbon streams on activated bentonite
- Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution
- Effect of exopolymeric substances on the kinetics of sorption and desorption of trivalent chromium in soil
- Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols
- Kinetics of chloride substitution in [Pt(bpma)Cl]+ and [Pt(gly-met-S,N,N)Cl] complexes by thiourea, nitrites, and iodides
- Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing
- Theoretical investigation on the reaction of HS+ with CH3NH2