Abstract
This review summarises the high potential of immobilised cells systems for the fermentative production of compounds, mainly produced by representatives of the Clostridium genus. Microorganisms of Clostridium species are recognised as good producers of a wide range of chemicals in almost every sector of industry. The combination of this microorganism with its immobilisation opens up new possibilities and renders the fermentation process more sophisticated than in a free-cell system. This review provides a comprehensive summary of techniques used in immobilisation of Clostridium species with regard to specific products and types of fermentation. In addition, comparisons of particular types of immobilisation techniques used in fermentation processes are summarised by specific products.
[1] Azbar, N., Gungormusler, M., & Gonen, C. (2011). Continuous production of 1,3-propanediol using waste glycerol with Clostridium beijerinckii NRRL-593 immobilized on glass beads and glass rushing rings. In Proceedings of the 4th Workshop on Fats and Oils as Renewable Feedstock for the Chemical Industry, March 20–22, 2011 (L15). Karlsruhe, Germany: Karlsruhe Institute of Technology. Suche in Google Scholar
[2] Balasubramanian, N., Kim, J. S., & Lee, Y. Y. (2001). Fermentation of xylose into acetic acid by Clostridium thermoaceticum. Applied Biochemistry and Biotechnology, 91–93, 367–376. DOI: 10.1385/abab:91-93:1-9:367. http://dx.doi.org/10.1385/ABAB:91-93:1-9:36710.1385/ABAB:91-93:1-9:367Suche in Google Scholar
[3] Barbirato, F., Himmi, E. H., Conte, T., & Bories, A. (1998). 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries. Industrial Crops and Products, 7, 281–289. DOI: 10.1016/s0926-6690(97)00059-9. http://dx.doi.org/10.1016/S0926-6690(97)00059-910.1016/S0926-6690(97)00059-9Suche in Google Scholar
[4] Badr, H. R, Toledo, R., & Hamdy, M. K. (2001). Continuous acetone-ethanol-butanol fermentation by immobilized cells of Clostridium acetobutylicum. Biomass and Bioenergy, 20, 119–132. DOI: 10.1016/s0961-9534(00)00068-4. http://dx.doi.org/10.1016/S0961-9534(00)00068-410.1016/S0961-9534(00)00068-4Suche in Google Scholar
[5] Bedia, J., Rosas, J. M., Vera, D., Rodríguez-Mirasol, J., & Cordero, T. (2010). Isopropanol decomposition on carbon based acid and basic catalysts. Catalysis Today, 158, 89–96. DOI:10.1016/j.cattod.2010.04.043. http://dx.doi.org/10.1016/j.cattod.2010.04.04310.1016/j.cattod.2010.04.043Suche in Google Scholar
[6] Beshay, U. (2003). Production of alkaline protease by Teredinobacter turnirae cells immobilized in Ca-alginate beads. African Journal of Biotechnology, 2, 60–65. 10.5897/AJB2003.000-1012Suche in Google Scholar
[7] Bharani, B., & Phatak, S. R. (2005). Acetic acid visualization of the cervix an alternative to colposcopy in evaluation of cervix at risk. The Journal of Obstetrics and Gynecology of India, 55, 530–533. Suche in Google Scholar
[8] Bradberry, S. (2007). Acetone. Medicine, 35, 581. DOI: 10.1016/j.mpmed.2007.08.012. http://dx.doi.org/10.1016/j.mpmed.2007.08.01210.1016/j.mpmed.2007.08.012Suche in Google Scholar
[9] Brossmer, Ch., & Arntz, D. (2000). U.S. Patent No. 6,140,543. Washington, D.C.: U.S. Patent and Trademark Office. Suche in Google Scholar
[10] Bučko, M., Mislovičoválka, J., Vikartovská, A., Šeflovičovík, J., Tkčík, I., Štefuca, V., Polakovič, M., Rosenberg, M., Rebroš, M., Šmogrovičovšvitel, J. (2012). Immobilization in biotechnology and biorecognition: from macro-to nanoscale systems. Chemical Papers, 66, 983–998. DOI: 10.2478/s11696-012-0226-3. http://dx.doi.org/10.2478/s11696-012-0226-310.2478/s11696-012-0226-3Suche in Google Scholar
[11] Burns, D. A., & Minton, N. P. (2011). Sporulation studies in Clostridium difficile. Journal of Microbiological Methods, 87, 133–134. DOI:10.1016/j.mimet.2011.07.017. http://dx.doi.org/10.1016/j.mimet.2011.07.01710.1016/j.mimet.2011.07.017Suche in Google Scholar
[12] Calasso, M., & Gobbetti, M. (2011). Lactic acid bacteria | Lactobacillus spp.: Other species. In J. W. Fuquay, P. F. Fox, & H. Roginski (Eds.), Encyclopedia of dairy science (2nd ed., pp. 125–131). San Diego, CA, USA: Academic Press. DOI: 10.1016/b978-0-12-374407-4.00265-x. http://dx.doi.org/10.1016/B978-0-12-374407-4.00265-X10.1016/B978-0-12-374407-4.00265-XSuche in Google Scholar
[13] Claassen, P. A. M., Budde M. A. W., & López-Contreras, A. M. (2000). Acetone, butanol and ethanol production from domestic organic waste by solventogenic clostridia. Journal of Molecular Microbiology and Biotechnology, 2, 39–44. Suche in Google Scholar
[14] Çaylak, B., & Vardar Sukan, F. (1998). Comparison of different production processes for bioethanol. Turkish Journal of Chemistry, 22, 351–360. Suche in Google Scholar
[15] Collet, C., Gaudard, O., Péringer, P., & Schwitzguébel, J. P. (2005). Acetate production from lactose by Clostiridium thermolacticum and hydrogen-scavenging microorganisms in continuous culture — Effect of hydrogen partial pressure. Journal of Biotechnology, 118, 328–338. DOI:10.1016/j.jbiotec.2005.05.011. http://dx.doi.org/10.1016/j.jbiotec.2005.05.01110.1016/j.jbiotec.2005.05.011Suche in Google Scholar
[16] Deckwer, W. D. (1995). Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiology Reviews, 16, 143–149. DOI: 10.1111/j.1574-6976.1995.tb00162.x. http://dx.doi.org/10.1111/j.1574-6976.1995.tb00162.x10.1111/j.1574-6976.1995.tb00162.xSuche in Google Scholar
[17] da Silva, G. P., Mack, M., & Contiero, J. (2009). Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnology Advances, 27, 30–39. DOI: 10.1016/j.biotechadv.2008.07.006. http://dx.doi.org/10.1016/j.biotechadv.2008.07.00610.1016/j.biotechadv.2008.07.006Suche in Google Scholar PubMed
[18] de Vasconcelos, J. N., Lopes, C. E., & de Franca, F. P. (2004). Continuous ethanol production using yeast immobilized on sugar-cane stalks. Brazilian Journal of Chemical Engineering, 21, 357–365. DOI: 10.1590/s0104-66322004000300002. http://dx.doi.org/10.1590/S0104-6632200400030000210.1590/S0104-66322004000300002Suche in Google Scholar
[19] Ding, J., Liu, B. F., Ren, N. Q., Xing, D. F., Guo, W. Q., Xu, J. F., & Xie, G. J. (2009). Hydrogen production from glucose by co-culture of Clostridium butyricum and immobilized Phodopseudomonas faecalis RLD-53. International Journal of Hydrogen Energy, 34, 3647–3652. DOI:10.1016/j.ijhydene.2009.02.078. http://dx.doi.org/10.1016/j.ijhydene.2009.02.07810.1016/j.ijhydene.2009.02.078Suche in Google Scholar
[20] Dürre, P. (2008). Fermentative butanol production. Annals of the New York Academy of Sciences, 1125, 353–362. DOI: 10.1196/annals.1419.009. http://dx.doi.org/10.1196/annals.1419.00910.1196/annals.1419.009Suche in Google Scholar PubMed
[21] Ezeji, T. C., Qureshi, N., & Blashek, H. P. (2004). Butanol fermentation research: upstream and downstream manipulations. Chemical Record, 4, 305–314. DOI:10.1002/tcr.20023. http://dx.doi.org/10.1002/tcr.2002310.1002/tcr.20023Suche in Google Scholar PubMed
[22] Ezeji, T. C., Qureshi, N., & Blashek, H. P. (2007). Bioproduction of butanol from biomass: from genes to bioreactor. Current Opinion in Biotechnology, 18, 220–227. DOI:10.1016/j.copbio.2007.04.002. http://dx.doi.org/10.1016/j.copbio.2007.04.00210.1016/j.copbio.2007.04.002Suche in Google Scholar PubMed
[23] Frick, Ch., & Schugerl, K. (1986). Continuous acetone-butanol production with free and immobilized Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 25, 186–193. DOI: 10.1007/bf00253646. http://dx.doi.org/10.1007/BF0025364610.1007/BF00253646Suche in Google Scholar
[24] George, H. A., Johnson, J. L., Moore, W. E. C., Holdeman, L. V., & Chen, J. S. (1983). Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. American Society of Microbiology, 45, 1160–1163. 10.1128/aem.45.3.1160-1163.1983Suche in Google Scholar PubMed PubMed Central
[25] Gheshlaghi, R., Scharer, J. M., Moo-Young, M., & Chou, C. P. (2009). Metabolic pathways of clostridia for producing butanol. Biotechnology Advances, 27, 764–781. DOI:10.1016/j.biotechadv.2009.06.002. http://dx.doi.org/10.1016/j.biotechadv.2009.06.00210.1016/j.biotechadv.2009.06.002Suche in Google Scholar PubMed
[26] Gholizadeh, L. (2009). Enhanced butanol production by free and immobilized Clostridium sp. cells using butyric acid as cosubstrate. Master thesis, University College of Boras, Boras, Sweden. Suche in Google Scholar
[27] Gullo, M., & Giudici, P. (2008). Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection. International Journal of Food Microbiology, 125, 46–53. DOI:10.1016/j.ijfoodmicro.2007.11.076. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.11.07610.1016/j.ijfoodmicro.2007.11.076Suche in Google Scholar
[28] Gungormusler, M., Gonen, C., & Azbar, N. (2011). Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture. Bioprocess and Biosystem Engineering, 34, 727–733. http://dx.doi.org/10.1007/s00449-011-0522-210.1007/s00449-011-0522-2Suche in Google Scholar
[29] He, Q., Lokken, P. M., Chen, S., & Zhou, J. (2009). Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus. Bioresource Technology, 100, 5955–5965. DOI:10.1016/j.biortech.2009. 06.084. http://dx.doi.org/10.1016/j.biortech.2009.06.08410.1016/j.biortech.2009.06.084Suche in Google Scholar
[30] Horiuchi, J. I., Shimizu, T., Tada, K., Kanno, T., & Kobayashi, M. (2002). Selective production of organic acids in anaerobic acid reactor by pH control. Bioresource Technology, 82, 209–213. DOI: 10.1016/s0960-8524(01)00195-x. http://dx.doi.org/10.1016/S0960-8524(01)00195-X10.1016/S0960-8524(01)00195-XSuche in Google Scholar
[31] Huang, Y. L., Mann, K., Novak, J. M., & Yang, S. (1998). Acetic acid production from fructose by Clostridium formicoaceticum immobilized in a fibrous-bed bioreactor. Biotechnology Progress, 14, 800–806. DOI: 10.1021/bp980077f. http://dx.doi.org/10.1021/bp980077f10.1021/bp980077fSuche in Google Scholar
[32] Huang, Y., & Yang, S. T. (1998). Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor. Biotechnology and Bioengineering, 60, 498–507. DOI: 10.1002/(SICI)1097-0290(19981120)60:4〈498::AID-BIT12〉3.0.CO;2-E. http://dx.doi.org/10.1002/(SICI)1097-0290(19981120)60:4<498::AID-BIT12>3.0.CO;2-E10.1002/(SICI)1097-0290(19981120)60:4<498::AID-BIT12>3.0.CO;2-ESuche in Google Scholar
[33] Huang, W. C., Ramey, D. E., & Yang, S. T. (2004). Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed reactor. Applied Biochemistry and Biotechnology, 113, 887–898. DOI: 10.1385/abab:115:1-3:0887. http://dx.doi.org/10.1385/ABAB:115:1-3:088710.1385/ABAB:115:1-3:0887Suche in Google Scholar
[34] Huang, J., Cai, J., Wang, J., Zhu, X., Huang, L., Yang, S. T., & Xu, Z. (2011). Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor. Bioresource Technology, 102, 3923–3926. DOI:10.1016/j.biortech.2010.11.112. http://dx.doi.org/10.1016/j.biortech.2010.11.11210.1016/j.biortech.2010.11.112Suche in Google Scholar
[35] Inokuma, K., Liao, J. C., Okamoto, M., & Hanai, T. (2010). Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. Journal of Bioscience and Bioengineering, 110, 696–701. DOI:10.1016/j.jbiosc.2010.07.010. http://dx.doi.org/10.1016/j.jbiosc.2010.07.01010.1016/j.jbiosc.2010.07.010Suche in Google Scholar
[36] IUPAC (1997). In: A. D. McNaught, & A. Wilkinson (Eds.), Compendium of chemical terminology (2nd ed., the “Gold Book”). Oxford, UK: Blackwell. Suche in Google Scholar
[37] Jiang, L., Wang, J., Liang, S., Wang, X., Cen, P., & Xu, Z. (2009). Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresource Technology, 100, 3403–3409. DOI:10.1016/j.biortech.2009.02.032. http://dx.doi.org/10.1016/j.biortech.2009.02.03210.1016/j.biortech.2009.02.032Suche in Google Scholar
[38] Jo, J. H., Lee, D. S., Park, D., & Park, J. M. (2008). Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresource Technology, 99, 6666–6672. DOI:10.1016/j.biortech.2007.11.067. http://dx.doi.org/10.1016/j.biortech.2007.11.06710.1016/j.biortech.2007.11.067Suche in Google Scholar
[39] John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2009). Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnology Advances, 27, 145–152. DOI:10.1016/j.biotechadv.2008. 10.004. http://dx.doi.org/10.1016/j.biotechadv.2008.10.00410.1016/j.biotechadv.2008.10.004Suche in Google Scholar
[40] Jones, D. T., & Woods, D. R. (1986). Acetone-butanol fermentation revisited. Microbiological Reviews, 50, 484–524. 10.1128/mr.50.4.484-524.1986Suche in Google Scholar
[41] Karel, S. F., Libicki, S. B., & Robertson, C. R. (1985). The immobilization of whole cells: Engineering principles. Chemical Engineering Science, 40, 1321–1354. DOI: 10.1016/0009-2509(85)80074-9. http://dx.doi.org/10.1016/0009-2509(85)80074-910.1016/0009-2509(85)80074-9Suche in Google Scholar
[42] Khana, S., Goyal, A., & Moholkar, V. S. (2011). Production of n-butanol from biodiesel derived crude glycerol using Clostridium pasteurianum immobilized on Amberlite. Fuel, DOI: 10.1016/j.fuel.2011.10.071. 10.1016/j.fuel.2011.10.071Suche in Google Scholar
[43] Kilonzo, P., Margaritis, A., & Bergougnou, M. (2011). Effects of surface treatment and process parameters on immobilization of recombinant yeast cells by adsorption to fibrous matrices. Bioresource Technology, 102, 3662–3672. DOI:10.1016/j.biortech.2010.11.055. http://dx.doi.org/10.1016/j.biortech.2010.11.05510.1016/j.biortech.2010.11.055Suche in Google Scholar PubMed
[44] Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., & Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 21, 377–397. DOI:10.1016/j.fm.2003.10.005. http://dx.doi.org/10.1016/j.fm.2003.10.00510.1016/j.fm.2003.10.005Suche in Google Scholar
[45] Kühtreiber, W. M., Lanza, R. P., & Chick, W. L. (1999). Cell encapsulation technology and therapeutics, Boston, USA: Birkhäuser. http://dx.doi.org/10.1007/978-1-4612-1586-810.1007/978-1-4612-1586-8Suche in Google Scholar
[46] Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J. H., & Jang, K. S. (2008). Fermentative butanol production by clostridia. Biotechnology and Bioengineering, 101, 209–228. DOI:10.1002/bit.22003. http://dx.doi.org/10.1002/bit.2200310.1002/bit.22003Suche in Google Scholar PubMed
[47] Lehmann, D., & Lütke-Eversloh, T. (2011). Switching Clostridium acetobutylicum to an ethanol producer by disruption of the butyrate/butanol fermentative pathway. Metabolic Engineering, 13, 464–473. DOI:10.1016/j.ymben.2011.04.006. http://dx.doi.org/10.1016/j.ymben.2011.04.00610.1016/j.ymben.2011.04.006Suche in Google Scholar PubMed
[48] Li, W., Han, H. J., & Zhang, C. H. (2011). Continuous butyric acid production by corn stalk immobilized Clostridium thermobutyricum cells. African Journal of Microbiology Research, 5, 661–666. Suche in Google Scholar
[49] Lin, P. Y., Whang, L. M., Wu, Y. R., Ren, W. J., Hsiao, C. J, Li, S. L., & Chang, J. S. (2007). Biological hydrogen production of the genus Clostridium: Metabolic study and mathematical model simulation. International Journal of Hydrogen Energy, 32, 1728–1735. DOI:10.1016/j.ijhydene.2006.12.009. http://dx.doi.org/10.1016/j.ijhydene.2006.12.00910.1016/j.ijhydene.2006.12.009Suche in Google Scholar
[50] Liou, J. S. C., Balkwill, D. L., Drake, G. R., & Tanner, R. S. (2005). Clostridium carboxidivoransi sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. International Journal of Systematic and Evolutionary Microbiology, 55, 2085–2091. DOI: 10.1099/ijs.0.63482-0. http://dx.doi.org/10.1099/ijs.0.63482-010.1099/ijs.0.63482-0Suche in Google Scholar
[51] Liu, X. G., & Yang, S. T. (2006). Kinetics of butyric acid fermentation of glucose and xylose by Clostridium tyrobutyricum wild type and mutant. Process Biochemistry, 41, 801–808. DOI:10.1016/j.procbio.2005.10.009. http://dx.doi.org/10.1016/j.procbio.2005.10.00910.1016/j.procbio.2005.10.009Suche in Google Scholar
[52] Liu, X. G., Zhu, Y., & Yang, S. T. (2006). Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme and Microbial Technology, 38, 521–528. DOI:10.1016/j.enzmictec.2005.07.008. http://dx.doi.org/10.1016/j.enzmictec.2005.07.00810.1016/j.enzmictec.2005.07.008Suche in Google Scholar
[53] Liu, D., Chen, Y., Li, A., Ding, F. Y., Zhou, T., He, Y., Li, B. B., Niu, H. Q., Lin, X. Q., Xie, J. J., Chen, X. C., Wu, J. L., & Ying, H. J. (2013). Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3 immobilized by surface adsorption. Bioresource Technology, 129, 321–328. DOI:10.1016/j.biortech.2012.11.090. http://dx.doi.org/10.1016/j.biortech.2012.11.09010.1016/j.biortech.2012.11.090Suche in Google Scholar
[54] Lozinsky, V. I., & Plieva F. M. (1998). Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme and Microbial Technology, 23, 227–242. DOI: 10.1016/s0141-0229(98)00036-2. http://dx.doi.org/10.1016/S0141-0229(98)00036-210.1016/S0141-0229(98)00036-2Suche in Google Scholar
[55] Matsumura, M., Takehara, S., & Kataoka, H. (1992). Continuous butanol/isopropanol fermentation in down-flow column reactor coupled with pervaporation using supported liquid membrane. Biotechnology and Bioengineering, 39, 148–156. DOI: 10.1002/bit.260390205. http://dx.doi.org/10.1002/bit.26039020510.1002/bit.260390205Suche in Google Scholar
[56] Najafpour, G. D. (2006). Immobilization of microbial cells for the production of organic acid and ethanol. In Biochemical engineering and biotechnology (pp. 199–227). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/b978-044452845-2/50008-2. 10.1016/B978-044452845-2/50008-2Suche in Google Scholar
[57] Núnez, M. J., & Lema, J. M. (1987). Cell immobilization: Application to alcohol production. Enzyme and Microbial Technology, 9, 642–651. DOI: 10.1016/0141-0229(87)90121-9. http://dx.doi.org/10.1016/0141-0229(87)90121-910.1016/0141-0229(87)90121-9Suche in Google Scholar
[58] Papanikolaou, S., Ruiz-Sanchez, P., Pariset, B., Blanchard, F., & Fick, M. (2000). High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. Journal of Biotechnology, 77, 191–208. DOI: 10.1016/s0168-1656(99)00217-5. http://dx.doi.org/10.1016/S0168-1656(99)00217-510.1016/S0168-1656(99)00217-5Suche in Google Scholar
[59] Papoutsakis, E. T. (2008). Engineering solventogenic clostridia. Current Opinion in Biotechnology, 19, 420–429. DOI: 10.1016/j.copbio.2008.08.003. http://dx.doi.org/10.1016/j.copbio.2008.08.00310.1016/j.copbio.2008.08.003Suche in Google Scholar
[60] Payot, S., Guedon, E., Gelhaye, E., & Petitdemange, H. (1999). Induction of lactate production associated with a decrease in NADH cell content enables growth resumption of Clostridium cellulolyticum in batch cultures on cellobiose. Research in Microbiology, 150, 465–473. DOI: 10.1016/s0923-2508(99)00110-2. http://dx.doi.org/10.1016/S0923-2508(99)00110-210.1016/S0923-2508(99)00110-2Suche in Google Scholar
[61] Qureshi, N., & Maddox, I. S. (1995). Continuous production of acetone-butanol-ethanol using immobilized cells of Clostridium acetobutylicum and integration with product removal by liquid-liquid extraction. Journal of Fermentation and Bioengineering, 80, 185–189. DOI: 10.1016/0922-338x(95)93217-8. http://dx.doi.org/10.1016/0922-338X(95)93217-810.1016/0922-338X(95)93217-8Suche in Google Scholar
[62] Qureshi, N, Schripsema, J., Lienhard, J., & Blaschek, H. P. (2000). Continuous solvent production by Clostridium beijerinckii BA101 immobilized by adsorption onto brick. World Journal of Microbiology and Biotechnology, 16, 377–382. DOI: 10.1023/a:1008984509404. http://dx.doi.org/10.1023/A:100898450940410.1023/A:1008984509404Suche in Google Scholar
[63] Qureshi, N., Li, X. L., Hughes, S., Saha, B. C., & Cotta, M. A. (2006). Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnology Progress, 22, 673–680. DOI: 10.1021/bp050360w. http://dx.doi.org/10.1021/bp050360w10.1021/bp050360wSuche in Google Scholar PubMed
[64] Ramakrishna, S. V., & Prakasham, R. S. (1999). Microbial fermentations with immobilized cells. Current Science, 77, 87–100. Suche in Google Scholar
[65] Rebroš, M., Rosenberg, M., Stloukal, R., & Krištofíkov Ľ. (2005). High efficiency ethanol fermentation by entrapment of Zymomonas mobilis into LentiKats®. Letters in Applied Microbiology, 41, 412–416. DOI: 10.1111/j.1472-765x.2005.01770.x. http://dx.doi.org/10.1111/j.1472-765X.2005.01770.x10.1111/j.1472-765X.2005.01770.xSuche in Google Scholar PubMed
[66] Rosenberg, M., Rebroš, M., Krištofíkovátová, K. (2005). High temperature lactic acid production by Bacillus coagulans immobilized in LentiKats. Biotechnology Letters, 27, 1943–1947. DOI: 10.1007/s10529-005-3907-y. http://dx.doi.org/10.1007/s10529-005-3907-y10.1007/s10529-005-3907-ySuche in Google Scholar PubMed
[67] Saint-Amans, S., Girbal, L., Andrade, J., Ahrens, K., & Soucaille, P. (2001). Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. Journal of Bacteriology, 183, 1748–1754. DOI:10.1128/jb.183.5.1748-1754.2001. http://dx.doi.org/10.1128/JB.183.5.1748-1754.200110.1128/JB.183.5.1748-1754.2001Suche in Google Scholar PubMed PubMed Central
[68] Sakai, S., Nakashimada, Y., Inokuma, K., Kita, M., Okada, H., & Nishio, N. (2005). Acetate and ethanol production from H2 and CO2 by Moorella sp. using a repeated batch culture. Journal of Bioscience and Bioengineering, 99, 252–258. DOI: 10.1263/jbb.99.252. http://dx.doi.org/10.1263/jbb.99.25210.1263/jbb.99.252Suche in Google Scholar PubMed
[69] Schwart, R. D., & Keller, F. A., Jr. (1982). Acetic acid production by Clostridium thermoaceticum in pH-controlled batch fermentations at acidic pH. Applied and Environmental Microbiology, 43, 1385–1392. 10.1128/aem.43.6.1385-1392.1982Suche in Google Scholar PubMed PubMed Central
[70] Šilhánková, L. (2008). Mikrobiologie pro potravinäře a biotechnology (3rd ed., pp. 132–134). Prague, Czech Republic: Academia. (in Czech) Suche in Google Scholar
[71] Sim, J. H., & Kamaruddin, A. H. (2008). Optimalization of acetic acid production from synthesis gas by chemolithotropic bacterium — Clostridium aceticum using statistical approach. Bioresource Technology, 99, 2724–2735. DOI: 10.1016/j. biortech.2007.07.004. http://dx.doi.org/10.1016/j.biortech.2007.07.00410.1016/j.biortech.2007.07.004Suche in Google Scholar
[72] Soni, S. K., Kaur, A., & Gupta, J. K. (2003). A solid state fermentation based bacterial α-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch. Process Biochemistry, 39, 185–192. DOI: 10.1016/s0032-9592(03)00058-x. http://dx.doi.org/10.1016/S0032-9592(03)00058-X10.1016/S0032-9592(03)00058-XSuche in Google Scholar
[73] Sormutai, W., Takagi, M., & Yoshida, T. (1996). Acetonebutanol fermentation by Clostridium aurantibutyricum ATCC 17777 from a model medium for palm oil mill effluent. Journal of Fermentation and Bioengineering, 81, 543–547. DOI: 10.1016/0922-338x(96)81477-2. http://dx.doi.org/10.1016/0922-338X(96)81477-210.1016/0922-338X(96)81477-2Suche in Google Scholar
[74] Survase, S. A, Jurgens, G., van Heiningen, A., & Granström, T. (2011). Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Applied Microbiology and. Biotechnology, 91, 1305–1313. DOI: 10.1007/s00253-011-3322-3. http://dx.doi.org/10.1007/s00253-011-3322-310.1007/s00253-011-3322-3Suche in Google Scholar PubMed
[75] Survase, S. A, van Heiningen, A., & Granström, T. (2012). Continuous bio-catalytic conversion of sugar mixture to acetone-butanol-ethanol by immobilized Clostridium acetobutylicum DSM 792. Applied Microbiology and Biotechnology, 93, 2309–2316. DOI: 10.1007/s00253-011-3761-x. http://dx.doi.org/10.1007/s00253-011-3761-x10.1007/s00253-011-3761-xSuche in Google Scholar PubMed
[76] Tosa, T., Sato, T., Mori, T., Matuo, Y., & Chibata, I. (1973). Continuous production of l-aspartic acid by immobilized aspartase. Biotechnology and Bioengineering, 15, 69–84. DOI: 10.1002/bit.260150106. http://dx.doi.org/10.1002/bit.26015010610.1002/bit.260150106Suche in Google Scholar
[77] Wang, G., & Wang, D. I. C. (1983). Production of acetic acid by immobilized whole cells of Clostridium thermoaceticum. Applied Biochemistry and Biotechnology, 8, 491–503. DOI: 10.1007/bf02780382. http://dx.doi.org/10.1007/BF0278038210.1007/BF02780382Suche in Google Scholar PubMed
[78] Wei, D., Liu, X. G., & Yang, S. T. (2013). Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Bioresource Technology, 129, 553–560. DOI: 10.1016/j.biortech. 2012.11.065. http://dx.doi.org/10.1016/j.biortech.2012.11.06510.1016/j.biortech.2012.11.065Suche in Google Scholar PubMed
[79] Wiegel, J., Kuk, S. U., & Kohring, G. W. (1989). Clostridium thermobutyricum sp. nov., a moderate thermophile isolated from a cellulolytic culture, that produces butyrate as the major product. International Journal of Systematic and Evolutionary Bacteriology, 39, 199–204. DOI: 10.1099/00207713-39-2-199. http://dx.doi.org/10.1099/00207713-39-2-19910.1099/00207713-39-2-199Suche in Google Scholar
[80] Wittlich, P. (2001). Biotechnical production of 1,3-propanediol from glycerol by immobilized cells of Clostridium butyricum NRRL B-1024 and thermophilic microorganisms. Ph.D. thesis, Braunschweig University of Technology, Braunschweig, Germany. Suche in Google Scholar
[81] Yamamoto, K., Murakami, R., & Takamura, Y. (1998). Isoprenoid quinine, cellular fatty acid composition and diaminopimelic acid isomers of newly classified thermophilic anaerobic Gram-positive bacteria. FEMS Microbiology Letters, 161, 351–358. DOI: 10.1111/j.1574-6968.1998.tb12968.x. http://dx.doi.org/10.1111/j.1574-6968.1998.tb12968.x10.1111/j.1574-6968.1998.tb12968.xSuche in Google Scholar
[82] Yen, H.W., Li, R. J., & Ma, T.W. (2011). The development process for a continuous acetone-butanol-ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum. Journal of the Taiwan Institute of Chemical Engineers, 42, 902–907. DOI:10.1016/j.jtice.2011.05.006. http://dx.doi.org/10.1016/j.jtice.2011.05.00610.1016/j.jtice.2011.05.006Suche in Google Scholar
[83] Zajkoska, P., Rebroš, M., & Rosenberg, M. (2013). Biocatalysis with immobilized Escherichia coli. Applied Microbiology and Biotechnology, 97, 1441–1455. DOI: 10.1007/s00253-012-4651-6. http://dx.doi.org/10.1007/s00253-012-4651-610.1007/s00253-012-4651-6Suche in Google Scholar
[84] Zhang, Z. Y., Jin, B., & Kelly, J. M. (2007). Production of lactic acid from renewable materials by Rhizopus fungi. Biochemical Engineering Journal, 35, 251–263. DOI:10.1016/j.bej.2007.01.028. http://dx.doi.org/10.1016/j.bej.2007.01.02810.1016/j.bej.2007.01.028Suche in Google Scholar
[85] Zhang, C. H., Ma, Y. J., Yang, F. X., Liu, W., & Zhang, Y. D. (2009). Optimalization of medium composition for butyric acid production by Clostridium thermobutyricum using response surface methodology. Bioresource Technology, 100, 4284–4288. DOI:10.1016/j.biortech.2009.03.022. http://dx.doi.org/10.1016/j.biortech.2009.03.02210.1016/j.biortech.2009.03.022Suche in Google Scholar
[86] Zhu, Y., & Yang, S. T. (2004). Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. Journal of Biotechnology, 110, 143–157. DOI:10.1016/j.jbiotec.2004.02.006. http://dx.doi.org/10.1016/j.jbiotec.2004.02.00610.1016/j.jbiotec.2004.02.006Suche in Google Scholar
[87] Zigová, J., Šturdík, E., Vandák, D., & Schlosser, Š. (1999). Butyric acid production by Clostridium butyricum with integrated extraction and pertraction. Process Biochemistry, 34, 835–843. DOI: 10.1016/s0032-9592(99)00007-2. http://dx.doi.org/10.1016/S0032-9592(99)00007-210.1016/S0032-9592(99)00007-2Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Immobilisation of Clostridium spp. for production of solvents and organic acids
- A multi-analytical approach to amber characterisation
- Performance and lifetime of slurry packed capillary columns for high performance liquid chromatography
- Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS
- In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols
- 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides — inhibitors of photosynthesis
- Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules
- Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants
- Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?
- Equilibrium of chiral extraction of 4-nitro-d,l-phenylalanine with BINAP metal complexes
- Influence of superplasticizers on the course of Portland cement hydration
- Effect of valence of copper on adsorption of dimethyl sulfide from liquid hydrocarbon streams on activated bentonite
- Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution
- Effect of exopolymeric substances on the kinetics of sorption and desorption of trivalent chromium in soil
- Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols
- Kinetics of chloride substitution in [Pt(bpma)Cl]+ and [Pt(gly-met-S,N,N)Cl] complexes by thiourea, nitrites, and iodides
- Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing
- Theoretical investigation on the reaction of HS+ with CH3NH2
Artikel in diesem Heft
- Immobilisation of Clostridium spp. for production of solvents and organic acids
- A multi-analytical approach to amber characterisation
- Performance and lifetime of slurry packed capillary columns for high performance liquid chromatography
- Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS
- In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols
- 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides — inhibitors of photosynthesis
- Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules
- Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants
- Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?
- Equilibrium of chiral extraction of 4-nitro-d,l-phenylalanine with BINAP metal complexes
- Influence of superplasticizers on the course of Portland cement hydration
- Effect of valence of copper on adsorption of dimethyl sulfide from liquid hydrocarbon streams on activated bentonite
- Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution
- Effect of exopolymeric substances on the kinetics of sorption and desorption of trivalent chromium in soil
- Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols
- Kinetics of chloride substitution in [Pt(bpma)Cl]+ and [Pt(gly-met-S,N,N)Cl] complexes by thiourea, nitrites, and iodides
- Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing
- Theoretical investigation on the reaction of HS+ with CH3NH2