Home Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing
Article
Licensed
Unlicensed Requires Authentication

Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing

  • Chuan-Jie Cheng EMAIL logo , Xiong-Xiong Bai , Wu-Qin Fan , Hai-Ming Wu , Liang Shen , Qing-Hua Huang and Yuan-Ming Tu
Published/Copyright: September 17, 2013
Become an author with De Gruyter Brill

Abstract

A novel photoactive gemini surfactant was easily synthesised in high yields. The multi-functional molecule can be used as a gemini surfactant, a benzophenone type photoinitiator, and as an ATRP initiator. Poly(methyl methacrylate) (PMMA) and poly(methyl methacrylate)-block-poly(allyl methacrylate) (PMMA-b-PAMA) were prepared using the photoactive gemini surfactant as an ATRP initiator under soap-free miniemulsion polymerisation conditions. Kinetic results of the miniemulsion polymerisation of methyl methacrylate (MMA) indicate that the reaction has controlled/living characteristics. UV curing was performed by irradiation of the linear PMMA-b-PAMA polymer, in which PMMA-b-PAMA containing a benzophenone moiety functioned as a macromolecular photoinitiator.

[1] Bai, L., Zhang, L., Zhang, Z., Zhu, J., Zhou, N., Cheng, Z., & Zhu, X. (2011). Alumina additives for fast iron-mediated AGET ATRP of MMA using onium salt as ligand. Journal of Polymer Science Part A: Polymer Chemistry, 49, 3970–3979. DOI: 10.1002/pola.24837. http://dx.doi.org/10.1002/pola.2483710.1002/pola.24837Search in Google Scholar

[2] Bai, L., Zhang, L., Cheng, Z., & Zhu, X. (2012). Activators generated by electron transfer for atom transfer radical polymerization: recent advances in catalyst and polymer chemistry. Polymer Chemistry, 3, 2685–2697. DOI: 10.1039/c2py20286g. http://dx.doi.org/10.1039/c2py20286g10.1039/c2py20286gSearch in Google Scholar

[3] Basinska, T., & Slomkowski, S. (2012). Design of polyglycidolcontaining microspheres for biomedical applications. Chemical Papers, 66, 352–368. DOI: 10.2478/s11696-011-0122-2. http://dx.doi.org/10.2478/s11696-011-0122-210.2478/s11696-011-0122-2Search in Google Scholar

[4] Benoit, D. S. W., Srinivasan, S., Shubin, A. D., & Stayton, P. S. (2011). Synthesis of folate-functionalized RAFT polymers for targeted siRNA delivery. Biomacromolecules, 12, 2708–2714. DOI: 10.1021/bm200485b. http://dx.doi.org/10.1021/bm200485b10.1021/bm200485bSearch in Google Scholar PubMed PubMed Central

[5] Brandt, W. C., de Oliveira Tomaselli, L., Correr-Sobrinho, L., & Sinhoreti, M. A. C. (2011). Can phenyl-propanedione influence Knoop hardness, rate of polymerization and bond strength of resin composite restorations? Journal of Dentistry, 39, 438–447. DOI: 10.1016/j.jdent.2011.03.009. http://dx.doi.org/10.1016/j.jdent.2011.03.00910.1016/j.jdent.2011.03.009Search in Google Scholar PubMed

[6] Braunecker, W. A., & Matyjaszewski, K. (2007). Controlled/living radical polymerization: Features, developments, and perspectives. Progress in Polymer Science, 32, 93–146. DOI: 10.1016/j.progpolymsci.2006.11.002. http://dx.doi.org/10.1016/j.progpolymsci.2006.11.00210.1016/j.progpolymsci.2006.11.002Search in Google Scholar

[7] Chen, Z., Wu, J., Fernando, S., & Jagodzinski, K. (2011). Soy-based, high biorenewable content UV curable coatings. Progress in Organic Coatings, 71, 98–109. DOI: 10.1016/j.porgcoat.2011.01.004. http://dx.doi.org/10.1016/j.porgcoat.2011.01.00410.1016/j.porgcoat.2011.01.004Search in Google Scholar

[8] Cheng, C., Shu, J., Gong, S., Shen, L., Qiao, Y., & Fu, C. (2010). Synthesis and use of a surface-active initiator in emulsion polymerization under AGET and ARGET ATRP conditions. New Journal of Chemistry, 34, 163–170. DOI: 10.1039/b9nj00307j. http://dx.doi.org/10.1039/b9nj00307j10.1039/B9NJ00307JSearch in Google Scholar

[9] Cheng, C., Shen, L., Fu, Q., & Gong, S. (2011a). Soap-free living/controlled radical emulsion polymerization. Progress in Chemistry, 23, 791–799. (in Chinese) Search in Google Scholar

[10] Cheng, C., Fu, Q., Liu, Z., Shen, L., Qiao, Y., & Fu, C. (2011b). Emulsifier-free synthesis of crosslinkable ABA triblock copolymer nanoparticles via AGET ATRP. Macromolecular Research, 19, 1048–1055. DOI: 10.1007/s13233-011-1008-4. http://dx.doi.org/10.1007/s13233-011-1008-410.1007/s13233-011-1008-4Search in Google Scholar

[11] Cheng, C. J., Fu, Q. L., Bai, X. X., Liu, S. J., Shen, L., Fan, W. Q., & Li, H. X. (2013). Facile synthesis of gemini surfaceactive ATRP initiator and its use in soap-free AGET ATRP mini-emulsion polymerisation. Chemical Papers, 67, 336–341. DOI: 10.2478/s11696-012-0271-y. http://dx.doi.org/10.2478/s11696-012-0271-y10.2478/s11696-012-0271-ySearch in Google Scholar

[12] Chu, D. S. H., Schellinger, J. G., Shi, J., Convertine, A. J., Stayton, P. S., & Pun, S. H. (2012). Application of living free radical polymerization for nucleic acid delivery. Accounts of Chemical Research, 45, 1089–1099. DOI: 10.1021/ar200242z. http://dx.doi.org/10.1021/ar200242z10.1021/ar200242zSearch in Google Scholar PubMed PubMed Central

[13] Destarac, M. (2010). Controlled radical polymerization: Industrial stakes, obstacles and achievements. Macromolecular Reaction Engineering, 4, 165–179. DOI: 10.1002/mren.200900087. http://dx.doi.org/10.1002/mren.20090008710.1002/mren.200900087Search in Google Scholar

[14] Eriksson, M., Boyer, A., Sinigoi, L., Johansson, M., Malmström, E., Hult, K., Trey, S., & Martinelle, M. (2010). One-pot enzymatic route to tetraallyl ether functional oligoesters: Synthesis, UV curing, and characterization. Journal of Polymer Science Part A: Polymer Chemistry, 48, 5289–5297. DOI: 10.1002/pola.24328. http://dx.doi.org/10.1002/pola.2432810.1002/pola.24328Search in Google Scholar

[15] Jahan, N., Paul, N., Petropolis, C. J., Marangoni, D. G., & Grindley, T. B. (2009). Synthesis of surfactants based on pentaerythritol. I. Cationic and zwitterionic gemini surfactants. The Journal of Organic Chemistry, 74, 7762–7773. DOI: 10.1021/jo9018107. 10.1021/jo9018107Search in Google Scholar PubMed

[16] Jakubowski, W., & Matyjaszewski, K. (2005). Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules, 38, 4139–4146. DOI: 10.1021/ma0 47389l. http://dx.doi.org/10.1021/ma047389lSearch in Google Scholar

[17] Jiang, H., Zhang, L., Pan, J., Jiang, X., Cheng, Z., & Zhu, X. (2012). Iron-mediated AGET ATRP of methyl methacrylate using metal wire as reducing agent. Journal of Polymer Science Part A: Polymer Chemistry, 50, 2244–2253. DOI: 10.1002/pola.26002. http://dx.doi.org/10.1002/pola.2600210.1002/pola.26002Search in Google Scholar

[18] Li, W., Matyjaszewski, K., Albrecht, K., & Möller, M. (2009). Reactive surfactants for polymeric nanocapsules via interfacially confined miniemulsion ATRP. Macromolecules, 42, 8228–8233. DOI: 10.1021/ma901574y. http://dx.doi.org/10.1021/ma901574y10.1021/ma901574ySearch in Google Scholar

[19] Lin, J., Wang, W., Wen, X., Cai, Z. Q., Pi, P., Zheng, D. F., Cheng, J., & Yang, Z. (2012). Thermal stability, curing kinetics and properties of polyurethanes system for in-mould decoration ink. Pigment & Resin Technology, 41, 351–358. DOI: 10.1108/03699421211274270. http://dx.doi.org/10.1108/0369942121127427010.1108/03699421211274270Search in Google Scholar

[20] Lindström, U. M. (Ed.) (2007). Organic reactions in water: Principles, strategies and applications. Oxford, UK: Blackwell Publishing. 10.1002/9780470988817Search in Google Scholar

[21] Lou, Q., & Shipp, D. A. (2012). Recent developments in atom transfer radical polymerization (ATRP): Methods to reduce metal catalyst concentrations. ChemPhysChem, 13, 3257–3261. DOI: 10.1002/cphc.201200166. http://dx.doi.org/10.1002/cphc.20120016610.1002/cphc.201200166Search in Google Scholar PubMed

[22] Matyjaszewski, K. (2012). Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules, 45, 4015–4039. DOI: 10.1021/ma3001719. http://dx.doi.org/10.1021/ma300171910.1021/ma3001719Search in Google Scholar

[23] Miao, J., Jiang, H., Zhang, L., Wu, Z., Cheng, Z., & Zhu, X. (2012). AGET ATRP of methyl methacrylate via a bimetallic catalyst. RSC Advances, 2, 840–847. DOI: 10.1039/c1ra00456e. http://dx.doi.org/10.1039/c1ra00456e10.1039/C1RA00456ESearch in Google Scholar

[24] Mincheva, R., Paneva, D., Mespouille, L., Manolova, N., Rashkov, I., & Dubois, P. (2009). Optimized water-based ATRP of an anionic monomer: Comprehension and properties characterization. Journal of Polymer Science Part A: Polymer Chemistry, 47, 1108–1119. DOI: 10.1002/pola.23 222. http://dx.doi.org/10.1002/pola.23222Search in Google Scholar

[25] Oh, J. K., Perineau, F., Charleux, B., & Matyjaszewski, K. (2009). AGET ATRP in water and inverse miniemulsion: A facile route for preparation of high-molecular-weight biocompatible brush-like polymers. Journal of Polymer Science Part A: Polymer Chemistry, 47, 1771–1781. DOI: 10.1002/pola.23272. http://dx.doi.org/10.1002/pola.2327210.1002/pola.23272Search in Google Scholar

[26] Shen, L., Ma, C., Pu, S., Cheng, C., Xu, J., Li, L., & Fu, C. (2009). Synthesis and properties of novel photochromic poly(methyl methacrylate-co-diarylethene)s. New Journal of Chemistry, 33, 825–830. DOI: 10.1039/b813901f. http://dx.doi.org/10.1039/b813901f10.1039/b813901fSearch in Google Scholar

[27] Shu, J., Cheng, C., Zheng, Y., Shen, L., Qiao, Y., & Fu, C. (2011). “One pot” synthesis of fluorinated block copolymers using a surface-active ATRP initiator under emulsion polymerization conditions. Polymer Bulletin, 67, 1185–1200. DOI: 10.1007/s00289-011-0446-7. http://dx.doi.org/10.1007/s00289-011-0446-710.1007/s00289-011-0446-7Search in Google Scholar

[28] Tsujii, Y., Ohno, K., Yamamoto, S., Goto, A., & Fukuda, T. (2006). Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. In R. Jordan (Ed.), Surface-initiated polymerization I (Advances in polymer science series, Vol. 197, pp. 1–45). Berlin, Germany: Springer. DOI: 10.1007/12 063. http://dx.doi.org/10.1007/12_063Search in Google Scholar

[29] Tasdelen, M. A., Kahveci, M. U., & Yagci, Y. (2011). Telechelic polymers by living and controlled/living polymerization methods. Progress in Polymer Science, 36, 455–567. DOI: 10.1016/j.progpolymsci.2010.10.002. http://dx.doi.org/10.1016/j.progpolymsci.2010.10.00210.1016/j.progpolymsci.2010.10.002Search in Google Scholar

[30] Wang, H., Pan, Q., & Rempel, G. L. (2012). Organic solventfree catalytic hydrogenation of diene-based polymer nanoparticles in latex form: Part I. Preparation of nano-substrate. Journal of Polymer Science Part A: Polymer Chemistry, 50, 4656–4665. DOI: 10.1002/pola.26277. http://dx.doi.org/10.1002/pola.2627710.1002/pola.26277Search in Google Scholar

[31] Yagci, Y., Jockusch, S., & Turro, N. J. (2010). Photoinitiated polymerization: Advances, challenges, and opportunities. Macromolecules, 43, 6245–6260. DOI: 10.1021/ma1007545. http://dx.doi.org/10.1021/ma100754510.1021/ma1007545Search in Google Scholar

[32] Yan, Q., Zhou, R., Fu, C., Zhang, H., Yin, Y., & Yuan, J. (2011). CO2-responsive polymeric vesicles that breathe. Angewandte Chemie International Edition, 50, 4923–4927. DOI: 10.1002/anie.201100708. http://dx.doi.org/10.1002/anie.20110070810.1002/anie.201100708Search in Google Scholar

[33] Yilmaz, G., Beyazit, S., & Yagci, Y. (2011). Visible light induced free radical promoted cationic polymerization using thioxanthone derivatives. Journal of Polymer Science Part A: Polymer Chemistry, 49, 1591–1596. DOI: 10.1002/pola.24582. http://dx.doi.org/10.1002/pola.2458210.1002/pola.24582Search in Google Scholar

[34] Zana, R. (2002). Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Advances in Colloid and Interface Science, 97, 205–253. DOI: 10.1016/s0001-8686(01)00069-0. http://dx.doi.org/10.1016/S0001-8686(01)00069-010.1016/S0001-8686(01)00069-0Search in Google Scholar

[35] Zhai, S., Shang, J., Yang, D., Wang, S., Hu, J., Lu, G., & Huang, X. (2012). Successive SET-LRP and ATRP synthesis of ferrocene-based PPEGMEA-g-PAEFC welldefined amphiphilic graft copolymer. Journal of Polymer Science Part A: Polymer Chemistry, 50, 811–820. DOI: 10.1002/pola.25836. http://dx.doi.org/10.1002/pola.2583610.1002/pola.25836Search in Google Scholar

[36] Zhang, Y., Li, C., & Liu, S. (2009). One-pot synthesis of ABC miktoarm star terpolymers by coupling ATRP, ROP, and click chemistry techniques. Journal of Polymer Science Part A: Polymer Chemistry, 47, 3066–3077. DOI: 10.1002/pola.23388. http://dx.doi.org/10.1002/pola.2338810.1002/pola.23388Search in Google Scholar

[37] Zheng, Y., Cheng, C. J., Huang, H. Q., Shen, L., Fu, C. Q., & Qiao, Y. L. (2011). Fast synthesis of ATRP initiators with photoinitiating activity by urea hydrogen peroxide method. Chinese Journal of Synthetic Chemistry, 19, 376–378. (in Chinese) Search in Google Scholar

[38] Zhou, J., & Cui, Y. (2001). Measurement and calculation of HLB value of surfactants. I. The measurement of HLB value. Speciality Petrochemicals, 2001, 11–14. (in Chinese) Search in Google Scholar

[39] Zhu, X., Zhou, N., Zhang, Z., Sun, B., Yang, Y., Zhu, J., & Zhu, X. (2011). Cyclic polymers with pendent carbazole units: enhanced fluorescence and redox behavior. Angewandte Chemie International Edition, 50, 6615–6618. DOI: 10.1002/anie.201101303. http://dx.doi.org/10.1002/anie.20110130310.1002/anie.201101303Search in Google Scholar PubMed

Published Online: 2013-9-17
Published in Print: 2014-1-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Immobilisation of Clostridium spp. for production of solvents and organic acids
  2. A multi-analytical approach to amber characterisation
  3. Performance and lifetime of slurry packed capillary columns for high performance liquid chromatography
  4. Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS
  5. In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols
  6. 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides — inhibitors of photosynthesis
  7. Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules
  8. Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants
  9. Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?
  10. Equilibrium of chiral extraction of 4-nitro-d,l-phenylalanine with BINAP metal complexes
  11. Influence of superplasticizers on the course of Portland cement hydration
  12. Effect of valence of copper on adsorption of dimethyl sulfide from liquid hydrocarbon streams on activated bentonite
  13. Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution
  14. Effect of exopolymeric substances on the kinetics of sorption and desorption of trivalent chromium in soil
  15. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols
  16. Kinetics of chloride substitution in [Pt(bpma)Cl]+ and [Pt(gly-met-S,N,N)Cl] complexes by thiourea, nitrites, and iodides
  17. Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing
  18. Theoretical investigation on the reaction of HS+ with CH3NH2
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0420-y/html
Scroll to top button