Startseite Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing

  • Chuan-Jie Cheng EMAIL logo , Xiong-Xiong Bai , Wu-Qin Fan , Hai-Ming Wu , Liang Shen , Qing-Hua Huang und Yuan-Ming Tu
Veröffentlicht/Copyright: 17. September 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A novel photoactive gemini surfactant was easily synthesised in high yields. The multi-functional molecule can be used as a gemini surfactant, a benzophenone type photoinitiator, and as an ATRP initiator. Poly(methyl methacrylate) (PMMA) and poly(methyl methacrylate)-block-poly(allyl methacrylate) (PMMA-b-PAMA) were prepared using the photoactive gemini surfactant as an ATRP initiator under soap-free miniemulsion polymerisation conditions. Kinetic results of the miniemulsion polymerisation of methyl methacrylate (MMA) indicate that the reaction has controlled/living characteristics. UV curing was performed by irradiation of the linear PMMA-b-PAMA polymer, in which PMMA-b-PAMA containing a benzophenone moiety functioned as a macromolecular photoinitiator.

[1] Bai, L., Zhang, L., Zhang, Z., Zhu, J., Zhou, N., Cheng, Z., & Zhu, X. (2011). Alumina additives for fast iron-mediated AGET ATRP of MMA using onium salt as ligand. Journal of Polymer Science Part A: Polymer Chemistry, 49, 3970–3979. DOI: 10.1002/pola.24837. http://dx.doi.org/10.1002/pola.2483710.1002/pola.24837Suche in Google Scholar

[2] Bai, L., Zhang, L., Cheng, Z., & Zhu, X. (2012). Activators generated by electron transfer for atom transfer radical polymerization: recent advances in catalyst and polymer chemistry. Polymer Chemistry, 3, 2685–2697. DOI: 10.1039/c2py20286g. http://dx.doi.org/10.1039/c2py20286g10.1039/c2py20286gSuche in Google Scholar

[3] Basinska, T., & Slomkowski, S. (2012). Design of polyglycidolcontaining microspheres for biomedical applications. Chemical Papers, 66, 352–368. DOI: 10.2478/s11696-011-0122-2. http://dx.doi.org/10.2478/s11696-011-0122-210.2478/s11696-011-0122-2Suche in Google Scholar

[4] Benoit, D. S. W., Srinivasan, S., Shubin, A. D., & Stayton, P. S. (2011). Synthesis of folate-functionalized RAFT polymers for targeted siRNA delivery. Biomacromolecules, 12, 2708–2714. DOI: 10.1021/bm200485b. http://dx.doi.org/10.1021/bm200485b10.1021/bm200485bSuche in Google Scholar PubMed PubMed Central

[5] Brandt, W. C., de Oliveira Tomaselli, L., Correr-Sobrinho, L., & Sinhoreti, M. A. C. (2011). Can phenyl-propanedione influence Knoop hardness, rate of polymerization and bond strength of resin composite restorations? Journal of Dentistry, 39, 438–447. DOI: 10.1016/j.jdent.2011.03.009. http://dx.doi.org/10.1016/j.jdent.2011.03.00910.1016/j.jdent.2011.03.009Suche in Google Scholar PubMed

[6] Braunecker, W. A., & Matyjaszewski, K. (2007). Controlled/living radical polymerization: Features, developments, and perspectives. Progress in Polymer Science, 32, 93–146. DOI: 10.1016/j.progpolymsci.2006.11.002. http://dx.doi.org/10.1016/j.progpolymsci.2006.11.00210.1016/j.progpolymsci.2006.11.002Suche in Google Scholar

[7] Chen, Z., Wu, J., Fernando, S., & Jagodzinski, K. (2011). Soy-based, high biorenewable content UV curable coatings. Progress in Organic Coatings, 71, 98–109. DOI: 10.1016/j.porgcoat.2011.01.004. http://dx.doi.org/10.1016/j.porgcoat.2011.01.00410.1016/j.porgcoat.2011.01.004Suche in Google Scholar

[8] Cheng, C., Shu, J., Gong, S., Shen, L., Qiao, Y., & Fu, C. (2010). Synthesis and use of a surface-active initiator in emulsion polymerization under AGET and ARGET ATRP conditions. New Journal of Chemistry, 34, 163–170. DOI: 10.1039/b9nj00307j. http://dx.doi.org/10.1039/b9nj00307j10.1039/B9NJ00307JSuche in Google Scholar

[9] Cheng, C., Shen, L., Fu, Q., & Gong, S. (2011a). Soap-free living/controlled radical emulsion polymerization. Progress in Chemistry, 23, 791–799. (in Chinese) Suche in Google Scholar

[10] Cheng, C., Fu, Q., Liu, Z., Shen, L., Qiao, Y., & Fu, C. (2011b). Emulsifier-free synthesis of crosslinkable ABA triblock copolymer nanoparticles via AGET ATRP. Macromolecular Research, 19, 1048–1055. DOI: 10.1007/s13233-011-1008-4. http://dx.doi.org/10.1007/s13233-011-1008-410.1007/s13233-011-1008-4Suche in Google Scholar

[11] Cheng, C. J., Fu, Q. L., Bai, X. X., Liu, S. J., Shen, L., Fan, W. Q., & Li, H. X. (2013). Facile synthesis of gemini surfaceactive ATRP initiator and its use in soap-free AGET ATRP mini-emulsion polymerisation. Chemical Papers, 67, 336–341. DOI: 10.2478/s11696-012-0271-y. http://dx.doi.org/10.2478/s11696-012-0271-y10.2478/s11696-012-0271-ySuche in Google Scholar

[12] Chu, D. S. H., Schellinger, J. G., Shi, J., Convertine, A. J., Stayton, P. S., & Pun, S. H. (2012). Application of living free radical polymerization for nucleic acid delivery. Accounts of Chemical Research, 45, 1089–1099. DOI: 10.1021/ar200242z. http://dx.doi.org/10.1021/ar200242z10.1021/ar200242zSuche in Google Scholar PubMed PubMed Central

[13] Destarac, M. (2010). Controlled radical polymerization: Industrial stakes, obstacles and achievements. Macromolecular Reaction Engineering, 4, 165–179. DOI: 10.1002/mren.200900087. http://dx.doi.org/10.1002/mren.20090008710.1002/mren.200900087Suche in Google Scholar

[14] Eriksson, M., Boyer, A., Sinigoi, L., Johansson, M., Malmström, E., Hult, K., Trey, S., & Martinelle, M. (2010). One-pot enzymatic route to tetraallyl ether functional oligoesters: Synthesis, UV curing, and characterization. Journal of Polymer Science Part A: Polymer Chemistry, 48, 5289–5297. DOI: 10.1002/pola.24328. http://dx.doi.org/10.1002/pola.2432810.1002/pola.24328Suche in Google Scholar

[15] Jahan, N., Paul, N., Petropolis, C. J., Marangoni, D. G., & Grindley, T. B. (2009). Synthesis of surfactants based on pentaerythritol. I. Cationic and zwitterionic gemini surfactants. The Journal of Organic Chemistry, 74, 7762–7773. DOI: 10.1021/jo9018107. 10.1021/jo9018107Suche in Google Scholar PubMed

[16] Jakubowski, W., & Matyjaszewski, K. (2005). Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules, 38, 4139–4146. DOI: 10.1021/ma0 47389l. http://dx.doi.org/10.1021/ma047389lSuche in Google Scholar

[17] Jiang, H., Zhang, L., Pan, J., Jiang, X., Cheng, Z., & Zhu, X. (2012). Iron-mediated AGET ATRP of methyl methacrylate using metal wire as reducing agent. Journal of Polymer Science Part A: Polymer Chemistry, 50, 2244–2253. DOI: 10.1002/pola.26002. http://dx.doi.org/10.1002/pola.2600210.1002/pola.26002Suche in Google Scholar

[18] Li, W., Matyjaszewski, K., Albrecht, K., & Möller, M. (2009). Reactive surfactants for polymeric nanocapsules via interfacially confined miniemulsion ATRP. Macromolecules, 42, 8228–8233. DOI: 10.1021/ma901574y. http://dx.doi.org/10.1021/ma901574y10.1021/ma901574ySuche in Google Scholar

[19] Lin, J., Wang, W., Wen, X., Cai, Z. Q., Pi, P., Zheng, D. F., Cheng, J., & Yang, Z. (2012). Thermal stability, curing kinetics and properties of polyurethanes system for in-mould decoration ink. Pigment & Resin Technology, 41, 351–358. DOI: 10.1108/03699421211274270. http://dx.doi.org/10.1108/0369942121127427010.1108/03699421211274270Suche in Google Scholar

[20] Lindström, U. M. (Ed.) (2007). Organic reactions in water: Principles, strategies and applications. Oxford, UK: Blackwell Publishing. 10.1002/9780470988817Suche in Google Scholar

[21] Lou, Q., & Shipp, D. A. (2012). Recent developments in atom transfer radical polymerization (ATRP): Methods to reduce metal catalyst concentrations. ChemPhysChem, 13, 3257–3261. DOI: 10.1002/cphc.201200166. http://dx.doi.org/10.1002/cphc.20120016610.1002/cphc.201200166Suche in Google Scholar PubMed

[22] Matyjaszewski, K. (2012). Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules, 45, 4015–4039. DOI: 10.1021/ma3001719. http://dx.doi.org/10.1021/ma300171910.1021/ma3001719Suche in Google Scholar

[23] Miao, J., Jiang, H., Zhang, L., Wu, Z., Cheng, Z., & Zhu, X. (2012). AGET ATRP of methyl methacrylate via a bimetallic catalyst. RSC Advances, 2, 840–847. DOI: 10.1039/c1ra00456e. http://dx.doi.org/10.1039/c1ra00456e10.1039/C1RA00456ESuche in Google Scholar

[24] Mincheva, R., Paneva, D., Mespouille, L., Manolova, N., Rashkov, I., & Dubois, P. (2009). Optimized water-based ATRP of an anionic monomer: Comprehension and properties characterization. Journal of Polymer Science Part A: Polymer Chemistry, 47, 1108–1119. DOI: 10.1002/pola.23 222. http://dx.doi.org/10.1002/pola.23222Suche in Google Scholar

[25] Oh, J. K., Perineau, F., Charleux, B., & Matyjaszewski, K. (2009). AGET ATRP in water and inverse miniemulsion: A facile route for preparation of high-molecular-weight biocompatible brush-like polymers. Journal of Polymer Science Part A: Polymer Chemistry, 47, 1771–1781. DOI: 10.1002/pola.23272. http://dx.doi.org/10.1002/pola.2327210.1002/pola.23272Suche in Google Scholar

[26] Shen, L., Ma, C., Pu, S., Cheng, C., Xu, J., Li, L., & Fu, C. (2009). Synthesis and properties of novel photochromic poly(methyl methacrylate-co-diarylethene)s. New Journal of Chemistry, 33, 825–830. DOI: 10.1039/b813901f. http://dx.doi.org/10.1039/b813901f10.1039/b813901fSuche in Google Scholar

[27] Shu, J., Cheng, C., Zheng, Y., Shen, L., Qiao, Y., & Fu, C. (2011). “One pot” synthesis of fluorinated block copolymers using a surface-active ATRP initiator under emulsion polymerization conditions. Polymer Bulletin, 67, 1185–1200. DOI: 10.1007/s00289-011-0446-7. http://dx.doi.org/10.1007/s00289-011-0446-710.1007/s00289-011-0446-7Suche in Google Scholar

[28] Tsujii, Y., Ohno, K., Yamamoto, S., Goto, A., & Fukuda, T. (2006). Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. In R. Jordan (Ed.), Surface-initiated polymerization I (Advances in polymer science series, Vol. 197, pp. 1–45). Berlin, Germany: Springer. DOI: 10.1007/12 063. http://dx.doi.org/10.1007/12_063Suche in Google Scholar

[29] Tasdelen, M. A., Kahveci, M. U., & Yagci, Y. (2011). Telechelic polymers by living and controlled/living polymerization methods. Progress in Polymer Science, 36, 455–567. DOI: 10.1016/j.progpolymsci.2010.10.002. http://dx.doi.org/10.1016/j.progpolymsci.2010.10.00210.1016/j.progpolymsci.2010.10.002Suche in Google Scholar

[30] Wang, H., Pan, Q., & Rempel, G. L. (2012). Organic solventfree catalytic hydrogenation of diene-based polymer nanoparticles in latex form: Part I. Preparation of nano-substrate. Journal of Polymer Science Part A: Polymer Chemistry, 50, 4656–4665. DOI: 10.1002/pola.26277. http://dx.doi.org/10.1002/pola.2627710.1002/pola.26277Suche in Google Scholar

[31] Yagci, Y., Jockusch, S., & Turro, N. J. (2010). Photoinitiated polymerization: Advances, challenges, and opportunities. Macromolecules, 43, 6245–6260. DOI: 10.1021/ma1007545. http://dx.doi.org/10.1021/ma100754510.1021/ma1007545Suche in Google Scholar

[32] Yan, Q., Zhou, R., Fu, C., Zhang, H., Yin, Y., & Yuan, J. (2011). CO2-responsive polymeric vesicles that breathe. Angewandte Chemie International Edition, 50, 4923–4927. DOI: 10.1002/anie.201100708. http://dx.doi.org/10.1002/anie.20110070810.1002/anie.201100708Suche in Google Scholar

[33] Yilmaz, G., Beyazit, S., & Yagci, Y. (2011). Visible light induced free radical promoted cationic polymerization using thioxanthone derivatives. Journal of Polymer Science Part A: Polymer Chemistry, 49, 1591–1596. DOI: 10.1002/pola.24582. http://dx.doi.org/10.1002/pola.2458210.1002/pola.24582Suche in Google Scholar

[34] Zana, R. (2002). Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Advances in Colloid and Interface Science, 97, 205–253. DOI: 10.1016/s0001-8686(01)00069-0. http://dx.doi.org/10.1016/S0001-8686(01)00069-010.1016/S0001-8686(01)00069-0Suche in Google Scholar

[35] Zhai, S., Shang, J., Yang, D., Wang, S., Hu, J., Lu, G., & Huang, X. (2012). Successive SET-LRP and ATRP synthesis of ferrocene-based PPEGMEA-g-PAEFC welldefined amphiphilic graft copolymer. Journal of Polymer Science Part A: Polymer Chemistry, 50, 811–820. DOI: 10.1002/pola.25836. http://dx.doi.org/10.1002/pola.2583610.1002/pola.25836Suche in Google Scholar

[36] Zhang, Y., Li, C., & Liu, S. (2009). One-pot synthesis of ABC miktoarm star terpolymers by coupling ATRP, ROP, and click chemistry techniques. Journal of Polymer Science Part A: Polymer Chemistry, 47, 3066–3077. DOI: 10.1002/pola.23388. http://dx.doi.org/10.1002/pola.2338810.1002/pola.23388Suche in Google Scholar

[37] Zheng, Y., Cheng, C. J., Huang, H. Q., Shen, L., Fu, C. Q., & Qiao, Y. L. (2011). Fast synthesis of ATRP initiators with photoinitiating activity by urea hydrogen peroxide method. Chinese Journal of Synthetic Chemistry, 19, 376–378. (in Chinese) Suche in Google Scholar

[38] Zhou, J., & Cui, Y. (2001). Measurement and calculation of HLB value of surfactants. I. The measurement of HLB value. Speciality Petrochemicals, 2001, 11–14. (in Chinese) Suche in Google Scholar

[39] Zhu, X., Zhou, N., Zhang, Z., Sun, B., Yang, Y., Zhu, J., & Zhu, X. (2011). Cyclic polymers with pendent carbazole units: enhanced fluorescence and redox behavior. Angewandte Chemie International Edition, 50, 6615–6618. DOI: 10.1002/anie.201101303. http://dx.doi.org/10.1002/anie.20110130310.1002/anie.201101303Suche in Google Scholar PubMed

Published Online: 2013-9-17
Published in Print: 2014-1-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Immobilisation of Clostridium spp. for production of solvents and organic acids
  2. A multi-analytical approach to amber characterisation
  3. Performance and lifetime of slurry packed capillary columns for high performance liquid chromatography
  4. Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS
  5. In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols
  6. 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides — inhibitors of photosynthesis
  7. Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules
  8. Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants
  9. Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?
  10. Equilibrium of chiral extraction of 4-nitro-d,l-phenylalanine with BINAP metal complexes
  11. Influence of superplasticizers on the course of Portland cement hydration
  12. Effect of valence of copper on adsorption of dimethyl sulfide from liquid hydrocarbon streams on activated bentonite
  13. Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution
  14. Effect of exopolymeric substances on the kinetics of sorption and desorption of trivalent chromium in soil
  15. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols
  16. Kinetics of chloride substitution in [Pt(bpma)Cl]+ and [Pt(gly-met-S,N,N)Cl] complexes by thiourea, nitrites, and iodides
  17. Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing
  18. Theoretical investigation on the reaction of HS+ with CH3NH2
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0420-y/html
Button zum nach oben scrollen