Abstract
Fused silica capillary columns of the internal diameter of 320 μm were packed with the Nucleosil C18 stationary phase of 5 μm using the slurry packing method. The time of the bed compaction phase, packing pressure, and the use of ultrasound varied to study their influence on the column performance. Van Deemter curves were measured and separation impedance values were calculated in order to assess both separation efficiency and kinetic performance of the columns. Selected columns were tested again after nine months to evaluate the stability of their beds. Separation efficiencies of all columns were similar, but a major difference, caused by the use of ultrasound, was observed in the bed stability. Columns sonicated for 25 minutes during the bed compaction phase exhibited unchanged performance in the course of several months, while the performance of non-sonicated columns decreased.
[1] Andreolini, F., Borra, C., & Novotny, M. (1987). Preparation and evaluation of slurry packed capillary columns for normal-phase liquid chromatography. Analytical Chemistry, 59, 2428–2432. DOI: 10.1021/ac00146a023. http://dx.doi.org/10.1021/ac00146a02310.1021/ac00146a023Suche in Google Scholar
[2] Angus, P. D. A., Demarest, C.W., Catalano, T., & Stobaugh, J. F. (2000). Aspects of column fabrication for packed capillary electrochromatography. Journal of Chromatography A, 887, 347–365. DOI: 10.1016/s0021-9673(00)00529-x. http://dx.doi.org/10.1016/S0021-9673(00)00529-X10.1016/S0021-9673(00)00529-XSuche in Google Scholar
[3] Borra, C., Han, S. M., & Novotny, M. (1987). Quantitative analytical aspects of reversed-phase liquid chromatography with slurry-packed capillary columns. Journal of Chromatography A, 385, 75–85. DOI: 10.1016/s0021-9673(01)94623-0. http://dx.doi.org/10.1016/S0021-9673(01)94623-010.1016/S0021-9673(01)94623-0Suche in Google Scholar
[4] Bristow, P. A., & Knox, J. H. (1977). Standardization of test conditions for high performance liquid chromatography columns. Chromatographia, 10, 279–289. DOI: 10.1007/ bf02263001. http://dx.doi.org/10.1007/BF0226300110.1007/BF02263001Suche in Google Scholar
[5] Bristow, P. A., Brittain, P. N., Riley, C. M., & Williamson, B. F. (1977). Upward slurry packing of liquid chromatography columns. Journal of Chromatography A, 131, 57–64. DOI: 10.1016/s0021-9673(00)80920-6. http://dx.doi.org/10.1016/S0021-9673(00)80920-610.1016/S0021-9673(00)80920-6Suche in Google Scholar
[6] Cortes, H. J., & Pfeiffer, C. D. (1993). Microcolumn size exclusion chromatography with polymeric stationary phases. Analytical Chemistry, 65, 1476–1480. DOI: 10.1021/ac00058a028. http://dx.doi.org/10.1021/ac00058a02810.1021/ac00058a028Suche in Google Scholar
[7] Crescentini, G., Bruner, F., Mangani, F., & Yafeng, G. (1988). Preparation and evaluation of dry-packed capillary columns for high-performance liquid chromatography. Analytical Chemistry, 60, 1659–1662. DOI: 10.1021/ac00168a005. http://dx.doi.org/10.1021/ac00168a00510.1021/ac00168a005Suche in Google Scholar
[8] Ehlert, S., Rösler, T., & Tallarek, U. (2008a). Packing density of slurry-packed capillaries at low aspect ratios. Journal of Separation Science, 31, 1719–1728. DOI: 10.1002/jssc.200800018. http://dx.doi.org/10.1002/jssc.20080001810.1002/jssc.200800018Suche in Google Scholar PubMed
[9] Ehlert, S., Kraiczek, K., Mora, J. A., Dittmann, M., Rozing, G. P., & Tallarek, U. (2008b). Separation efficiency of particlepacked HPLC microchips. Analytical Chemistry, 80, 5945–5950. DOI: 10.1021/ac800576v. http://dx.doi.org/10.1021/ac800576v10.1021/ac800576vSuche in Google Scholar PubMed
[10] Gaspar, A., Piyasena, M. E., & Gomez, F. A. (2007). Fabrication of fritless chromatographic microchips packed with conventional reversed-phase silica particles. Analytical Chemistry, 79, 7906–7909. DOI: 10.1021/ac071106g. http://dx.doi.org/10.1021/ac071106g10.1021/ac071106gSuche in Google Scholar PubMed
[11] Gluckman, J. C., Hirose, A., McGuffin, V. L., & Novotny, M. (1983). Performance evaluation of slurry-packed capillary columns for liquid chromatography. Chromatographia, 17, 303–309. DOI: 10.1007/bf02270662. http://dx.doi.org/10.1007/BF0227066210.1007/BF02270662Suche in Google Scholar
[12] Jung, S., Ehlert, S., Mora, J. A., Kraiczek, K., Dittmann, M., Rozing, G. P., & Tallarek, U. (2009). Packing density, permeability, and separation efficiency of packed microchips at different particle-aspect ratios. Journal of Chromatography A, 1216, 264–273. DOI: 10.1016/j.chroma.2008.11.073. http://dx.doi.org/10.1016/j.chroma.2008.11.07310.1016/j.chroma.2008.11.073Suche in Google Scholar PubMed
[13] Karlsson, K. E., & Novotny, M. (1988). Separation efficiency of slurry-packed liquid chromatography microcolumns with very small inner diameters. Analytical Chemistry, 60, 1662–1665. DOI: 10.1021/ac00168a006. http://dx.doi.org/10.1021/ac00168a00610.1021/ac00168a006Suche in Google Scholar PubMed
[14] Keller, H. P., Erni, F., Linder, H. R., & Frei, R. W. (1977). Dynamic slurry-packing technique for liquid chromatography columns. Analytical Chemistry, 49, 1958–1963. DOI: 10.1021/ac50021a018. http://dx.doi.org/10.1021/ac50021a01810.1021/ac50021a018Suche in Google Scholar
[15] Kennedy, R. T., & Jorgenson, J. W. (1989). Preparation and evaluation of packed capillary liquid chromatography columns with inner diameters from 20 to 50 micrometers. Analytical Chemistry, 61, 1128–1135. DOI: 10.1021/ac00185a016. http://dx.doi.org/10.1021/ac00185a01610.1021/ac00185a016Suche in Google Scholar
[16] Kirkland, J. J., & DeStefano, J. J. (2006). The art and science of forming packed analytical high-performance liquid chromatography columns. Journal of Chromatography A, 1126, 50–57. DOI: 10.1016/j.chroma.2006.04.027. http://dx.doi.org/10.1016/j.chroma.2006.04.02710.1016/j.chroma.2006.04.027Suche in Google Scholar PubMed
[17] Konishi, M., Mori, Y., & Amano, T. (1985). High-performance packed glass-lined stainless steel capillary column for microcolumn liquid chromatography. Analytical Chemistry, 57, 2235–2239. DOI: 10.1021/ac00289a014. http://dx.doi.org/10.1021/ac00289a01410.1021/ac00289a014Suche in Google Scholar
[18] Lazar, I. M., Trisiripisal, P., & Sarvaiya, H. A. (2006). Microfluidic liquid chromatography system for proteomic applications and biomarker screening. Analytical Chemistry, 78, 5513–5524. DOI: 10.1021/ac060434y. http://dx.doi.org/10.1021/ac060434y10.1021/ac060434ySuche in Google Scholar PubMed
[19] Leonardis, I., Capriotti, F., Cappiello, A., Famiglini, G., & Palma, P. (2012). Temperature effects on nano-LC column packing technology. Journal of Separation Science, 35, 1589–1595. DOI: 10.1002/jssc.201200081. http://dx.doi.org/10.1002/jssc.20120008110.1002/jssc.201200081Suche in Google Scholar PubMed
[20] Lottes, F., Arlt, W., Minceva, M., & Stenby, E. H. (2009). Hydrodynamic impact of particle shape in slurry packed liquid chromatography columns. Journal of Chromatography A, 1216, 5687–5695. DOI: 10.1016/j.chroma.2009.05.090. http://dx.doi.org/10.1016/j.chroma.2009.05.09010.1016/j.chroma.2009.05.090Suche in Google Scholar PubMed
[21] Lynen, F., Buica, A., de Villiers, A., Crouch, A., & Sandra, P. (2005). An efficient slurry packing procedure for the preparation of columns applicable in capillary electrochromatography and capillary electrochromatography-electrospray-mass spectrometry. Journal of Separation Science, 28, 1539–1549. DOI: 10.1002/jssc.200400099. http://dx.doi.org/10.1002/jssc.20040009910.1002/jssc.200400099Suche in Google Scholar
[22] Maloney, T. D., & Colón, L. A. (2002). Comparison of column packing techniques for capillary electrochromatography. Journal of Separation Science, 25, 1215–1225. DOI: 10.1002/1615-9314(20021101)25:15/17〈1215::aid-jssc1215〉3.0.co;2-o. http://dx.doi.org/10.1002/1615-9314(20021101)25:15/17<1215::AID-JSSC1215>3.0.CO;2-O10.1002/1615-9314(20021101)25:15/17<1215::AID-JSSC1215>3.0.CO;2-OSuche in Google Scholar
[23] Meyer, R. F., & Hartwick, R. A. (1984). Efficient packing of small particle microbore columns. Analytical Chemistry, 56, 2211–2214. DOI: 10.1021/ac00276a051. http://dx.doi.org/10.1021/ac00276a05110.1021/ac00276a051Suche in Google Scholar
[24] Robson, M. M., Roulin, S., Shariff, S. M, Raynor, M. W., Bartle, K. D., Clifford, A. A., Myers, P., Euerby, M. R., & Johnson, C. M. (1996). Capillary electrochromatography using columns packed with a supercritical fluid carrier. Chromatographia, 43, 313–321. DOI: 10.1007/bf02271002. http://dx.doi.org/10.1007/BF0227100210.1007/BF02271002Suche in Google Scholar
[25] Roulin, S., Dmoch, R., Carney, R., Bartle, K. D., Myers, P., Euerby, M. R., & Johnson, C. (2000). Comparison of different packing methods for capillary electrochromatography columns. Journal of Chromatography A, 887, 307–312. DOI: 10.1016/s0021-9673(00)00366-6. http://dx.doi.org/10.1016/S0021-9673(00)00366-610.1016/S0021-9673(00)00366-6Suche in Google Scholar
[26] Shen, Y., Yang, Y. J., & Lee, M. L. (1997). Fundamental considerations of packed-capillary GC, SFC, and LC using nonporous silica particles. Analytical Chemistry, 69, 628–635. DOI: 10.1021/ac960657w. http://dx.doi.org/10.1021/ac960657w10.1021/ac960657wSuche in Google Scholar
[27] Vissers, J. P. C., Claessens, H. A., Laven, J., & Cramers, C. A. (1995). Colloid chemical aspects of slurry packing techniques in microcolumn liquid chromatography. Analytical Chemistry, 67, 2103–2109. DOI: 10.1021/ac00109a032. http://dx.doi.org/10.1021/ac00109a03210.1021/ac00109a032Suche in Google Scholar
[28] Wong, V., Shalliker, R. A., & Guiochon, G. (2004). Evaluation of the uniformity of analytical-size chromatography columns prepared by the downward packing of particulate slurries. Analytical Chemistry, 76, 2601–2608. DOI: 10.1021/ac030391a. http://dx.doi.org/10.1021/ac030391a10.1021/ac030391aSuche in Google Scholar
[29] Xie, J., Miao, Y., Shih, J., Tai, Y. C., & Lee, T. D. (2005). Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures. Analytical Chemistry, 77, 6947–6953. DOI: 10.1021/ac0510888. http://dx.doi.org/10.1021/ac051088810.1021/ac0510888Suche in Google Scholar
[30] Yin, H. F., Killeen, K., Brennen, R., Sobek, D., Werlich, M., & van de Goor, T. (2005). Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Analytical Chemistry, 77, 527–533. DOI: 10.1021/ac049068d. http://dx.doi.org/10.1021/ac049068d10.1021/ac049068dSuche in Google Scholar
[31] Zimina, T., Smith, R. M., Highfield, J. C., Myers, P., & King, B. W. (1996). Study of the flow development during the slurry packing of microcolumns for liquid chromatography. Journal of Chromatography A, 728, 33–45. DOI: 10.1016/0021-9673(95)01026-2. http://dx.doi.org/10.1016/0021-9673(95)01026-210.1016/0021-9673(95)01026-2Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Immobilisation of Clostridium spp. for production of solvents and organic acids
- A multi-analytical approach to amber characterisation
- Performance and lifetime of slurry packed capillary columns for high performance liquid chromatography
- Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS
- In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols
- 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides — inhibitors of photosynthesis
- Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules
- Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants
- Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?
- Equilibrium of chiral extraction of 4-nitro-d,l-phenylalanine with BINAP metal complexes
- Influence of superplasticizers on the course of Portland cement hydration
- Effect of valence of copper on adsorption of dimethyl sulfide from liquid hydrocarbon streams on activated bentonite
- Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution
- Effect of exopolymeric substances on the kinetics of sorption and desorption of trivalent chromium in soil
- Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols
- Kinetics of chloride substitution in [Pt(bpma)Cl]+ and [Pt(gly-met-S,N,N)Cl] complexes by thiourea, nitrites, and iodides
- Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing
- Theoretical investigation on the reaction of HS+ with CH3NH2
Artikel in diesem Heft
- Immobilisation of Clostridium spp. for production of solvents and organic acids
- A multi-analytical approach to amber characterisation
- Performance and lifetime of slurry packed capillary columns for high performance liquid chromatography
- Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS
- In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols
- 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides — inhibitors of photosynthesis
- Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules
- Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants
- Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?
- Equilibrium of chiral extraction of 4-nitro-d,l-phenylalanine with BINAP metal complexes
- Influence of superplasticizers on the course of Portland cement hydration
- Effect of valence of copper on adsorption of dimethyl sulfide from liquid hydrocarbon streams on activated bentonite
- Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution
- Effect of exopolymeric substances on the kinetics of sorption and desorption of trivalent chromium in soil
- Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols
- Kinetics of chloride substitution in [Pt(bpma)Cl]+ and [Pt(gly-met-S,N,N)Cl] complexes by thiourea, nitrites, and iodides
- Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing
- Theoretical investigation on the reaction of HS+ with CH3NH2