Startseite Application of 2-(octylsulphanyl)benzoic acid as Pb2+ selective ionophore in hybrid membrane system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Application of 2-(octylsulphanyl)benzoic acid as Pb2+ selective ionophore in hybrid membrane system

  • Andrzej Oberta EMAIL logo , Janusz Wasilewski , Marek Świątkowski und Romuald Wódzki
Veröffentlicht/Copyright: 16. November 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A solution of 2-(octylsulphanyl)benzoic acid in 1,2-dichloroethane was used as a liquid membrane for selective pertraction of Pb2+ cations. Transport processes were carried out in a multi-membrane hybrid system (MHS) consisting of two cation-exchange membranes (CEM) and a flowing liquid membrane (FLM) in the following order: CEM | FLM | CEM. The liquid membrane phase was dehydrated continuously using a pervaporation method (PV). The system was capable of transporting Pb2+ ions selectively from a multi-cation aqueous solution composed of Na+, K+, Ca2+, Mg2+, and Pb2+ nitrates. A comparative study of the carrier efficiency under various feed pH conditions was performed. It was found that the carrier exhibited sufficient selectivity and transport efficiency under a broad range of operational conditions, with a maximum transport rate of Pb2+ ions attaining the value of (1.09 ± 0.03) × 10−10 mol cm−2 s−1 and the selectivity coefficient of up to 40.

[1] Baba, Y., & Inoue, K. (1984). Extraction equilibrium of silver with a sulfur-containing carboxylic acid. Solvent Extraction and Ion Exchange, 2, 579–590. DOI: 10.1080/07366298408918464. http://dx.doi.org/10.1080/0736629840891846410.1080/07366298408918464Suche in Google Scholar

[2] Barnes, D. S., Ford, G. J., Pettit, L. D., & Sherrington, C. (1971). Ligands containing elements of group VIB. Part V. Thermodynamics of silver complex formation of some saturated and unsaturated (alkylthio)acetic and (alkylseleno)acetic acids. Journal of Chemical Society A: Inorganic, Physical, Theoretical, 18, 2883–2887. DOI: 10.1039/J19710002883. http://dx.doi.org/10.1039/j1971000288310.1039/j19710002883Suche in Google Scholar

[3] Bramlett, J.M., Im, H. J., Yu, X.H., Chen, T., Cai, H., Roecker, L. E., Barnes, C. E., Dai, S., & Xue, Z. L. (2004). Reactions of thioether carboxylic acids with mercury(II). Formation and X-ray crystal structure of mercury(II) mercaptoacetate. Inorganica Chimica Acta, 357, 243–249. DOI: 10.1016/S0020-1693(03)00446-8. http://dx.doi.org/10.1016/S0020-1693(03)00446-810.1016/S0020-1693(03)00446-8Suche in Google Scholar

[4] Canet, L., Ilpide, M., & Seta, P. (2002). Efficient facilitated transport of lead, cadmium, zinc, and silver across a flat-sheet-supported liquid membrane mediated by lasalocid A. Separation Science and Technology, 37, 1851–1860. DOI: 10.1081/SS-120003047. http://dx.doi.org/10.1081/SS-12000304710.1081/SS-120003047Suche in Google Scholar

[5] Doh, K. M., Kim, I. C., & Choi, B. Y. (1995). Synthesis and characterization of a di-μ-oxo-bridged molybdeum(V) complexes. Journal of the Korean Chemical Society, 39, 198–203. Suche in Google Scholar

[6] Eyal, A., & Kislik, V. (1999). Aqueous hybrid liquid membrane: A novel system for separation of solutes using water-soluble polymers as carriers. Journal of Membrane Science, 161, 207–221. DOI: 10.1016/S0376-7388(99)00113-1. http://dx.doi.org/10.1016/S0376-7388(99)00113-110.1016/S0376-7388(99)00113-1Suche in Google Scholar

[7] Ford, G. J., Gans, P., Pettit, L. D., & Sherrington, C. (1972). Ligands containing elements of group VIB. Part VI. Transition metal complexes of some alkyl- and aryl-thioacetic and -selenoacetic acids. Journal of Chemical Society A, Dalton Transactions, 16, 1763–1765. DOI: 10.1039/DT9720001763. http://dx.doi.org/10.1039/dt972000176310.1039/dt9720001763Suche in Google Scholar

[8] Geary, W. J., & Malcolm, D. E. (1970). Complexes of SSS′S′-ethanediylidenetetra[(thio)acetic acid] and related ligands with cobalt(II), nickel(II), and copper(II). Journal of Chemical Society A: Inorganic, Physical, Theoretical, 1970, 797–802. DOI: 10.1039/J19700000797. http://dx.doi.org/10.1039/j1970000079710.1039/J19700000797Suche in Google Scholar

[9] Gega, J., Walkowiak, W., & Gajda, B. (2001). Separation of Co(II) and Ni(II) ions by supported and hybrid liquid membranes. Separation and Purification Technology, 22–23, 551–558. DOI: 10.1016/S1383-5866(00)00137-4. http://dx.doi.org/10.1016/S1383-5866(00)00137-410.1016/S1383-5866(00)00137-4Suche in Google Scholar

[10] Gholivand, M. B., & Khorsandipoor, S. (2000). Selective and efficient uphill transport of Cu(II) through bulk liquid membrane using N-ethyl-2-aminocyclopentene-1-dithiocarboxylic acid as carrier. Journal of Membrane Science, 180, 115–120. DOI: 10.1016/S0376-7388(00)00523-8. http://dx.doi.org/10.1016/S0376-7388(00)00523-810.1016/S0376-7388(00)00523-8Suche in Google Scholar

[11] Hiratani, K., Sugihara, H., Kasuga, K., Fujiwara, K., Hayashita, T., & Bartsch, R. A. (1994). An acyclic polyether dicer-boxylic acid ionophore with high selectivity for pH-driven uphill transport of lead(II) ion. Journal of the Chemical Society, Chemical Communications, 1994, 319–320. DOI: 10.1039/C39940000319. http://dx.doi.org/10.1039/c39940000319Suche in Google Scholar

[12] Irving, R. J., & Fernelius, W. C. (1956). Formation constants of some metal derivatives: S-alkyl carboxylic acids. The Journal of Physical Chemistry, 60, 1427–1429. DOI: 10.1021/j150544a022. http://dx.doi.org/10.1021/j150544a02210.1021/j150544a022Suche in Google Scholar

[13] Kim, J. S., Cho, M. H., Lee, S. C., Pang, J. H., Lee, J. H., & Ohki, A. (1999). Lead selective lipophilic acyclic diion izable polyethers. Talanta, 49, 69–75. DOI: 10.1016/S0039-9140(98)00362-2. http://dx.doi.org/10.1016/S0039-9140(98)00362-210.1016/S0039-9140(98)00362-2Suche in Google Scholar

[14] Kislik, V. S. (2010). Bulk hybrid liquid membrane with organic water-immiscible carriers: application to chemical, biochemical, pharmaceutical, and gas separations. In V. S. Kislik (Ed.), Liquid membranes — Principles & applications in chemical separations & wastewater treatment (pp. 201–276). Amsterdam, The Nederlands: Elsevier. Suche in Google Scholar

[15] Kislik, V., & Eyal, A. (2000). Aqueous hybrid liquid membrane process for metal separation: Part II. Selectivity of metals separation from wet-process phosphoric acid. Journal of Membrane Science, 169, 133–146. DOI: 10.1016/S0376-7388(99)00332-4. 10.1016/S0376-7388(99)00332-4Suche in Google Scholar

[16] Kujawski, W., Nguyen, T. Q., & Neel, J. (1991). Dehydration of water-pyridine mixtures by pervaporation. Separation Science and Technology, 26, 1109–1121. DOI: 10.1080/01496399108050517. http://dx.doi.org/10.1080/0149639910805051710.1080/01496399108050517Suche in Google Scholar

[17] Oberta, A., Wasilewski, J., & Wódzki, R. (2010). Selective lead(II) transport in liquid membrane system with octylsulfanylacetic acid ionophore. Desalination, 252, 40–45. DOI: 10.1016/j.desal.2009.11.004. http://dx.doi.org/10.1016/j.desal.2009.11.00410.1016/j.desal.2009.11.004Suche in Google Scholar

[18] Pasto, D. J., & Kent, R. (1965). Solvent effect studies on the ionization constants of phenylmercapto-, phenylsulfinyl-, and phenylsulfoylacetic acids. Journal of Organic Chemistry, 30, 2684–2687. DOI: 10.1021/jo01019a042. http://dx.doi.org/10.1021/jo01019a04210.1021/jo01019a042Suche in Google Scholar

[19] Pettit, L. D., & Sherrington, C. (1968). Ligands containing elements of group VIB. Part III. The silver complexes of saturated and unsaturated (alkylthio)acetic and p-(alkylthio)benzoic acids. Journal of Chemical Society A: Inorganic, Physical, Theoretical, 1968, 3078–3082. DOI: 10.1039/J19680003078. http://dx.doi.org/10.1039/j1968000307810.1039/j19680003078Suche in Google Scholar

[20] Saito, K., Taninaka, I., Murakami, S., & Muromatsu, A. (1998). Extraction behaviour of copper(II) and silver(I) with a thiacrown ether carboxylic acid, 2-(3,6,10,13-tetrathiacyclotetradec-1-oxy)hexanoic acid. Talanta, 46, 1187–1194. DOI: 10.1016/S0039-9140(97)00365-2. http://dx.doi.org/10.1016/S0039-9140(97)00365-210.1016/S0039-9140(97)00365-2Suche in Google Scholar

[21] Siswanta, D., Nagatsuka, K., Yamada, H., Kumakura, K., Hisamoto, H., Shichi, Y., Toshima, K., & Suzuki, K. (1996). Structural ion selectivity of thia crown ether compounds with a bulky block subunit and their application as an ion-sensing component for an ion-selective electrode. Analytical Chemistry, 68, 4166–4172. DOI: 10.1021/ac960396q. http://dx.doi.org/10.1021/ac960396q10.1021/ac960396qSuche in Google Scholar

[22] Stypinski-Mis, B., & Anderegg, G. (2000). The stability of palladium( II) complexes with sulphur-containing ligands. Analytica Chimica Acta, 406, 325–332. DOI: 10.1016/S0003-2670(99)00776-X. http://dx.doi.org/10.1016/S0003-2670(99)00776-X10.1016/S0003-2670(99)00776-XSuche in Google Scholar

[23] Szczepańska, G. (2010). Experimental and theoretical modeling of integrated membrane systems. Ph.D. thesis. Universitas Nicolai Copernici, Toruń, Poland. Suche in Google Scholar

[24] Wódzki, R., Świątkowski, M., Kałużyński, K., & Pretula, J. (2002). Pertraction of cations in a hybrid membrane system containing soluble polymeric ionophores. Journal of Applied Polymer Science, 84, 99–109 DOI: 10.1002/app.10263. http://dx.doi.org/10.1002/app.1026310.1002/app.10263Suche in Google Scholar

[25] Wódzki, R., Świątkowski, M., & Łapienis, G. (2001). Mobile macromolecular carriers of ionic substances, 2 transport rates and separation of some divalent cations by poly(oxyethylene) phosphates. Macromolecular Chemistry and Physics, 202, 145–154. DOI: 10.1002/1521-3935(20010101)202:1〈145::AIDMACP145〉3.0.CO;2-M. http://dx.doi.org/10.1002/1521-3935(20010101)202:1<145::AID-MACP145>3.0.CO;2-M10.1002/1521-3935(20010101)202:1<145::AID-MACP145>3.0.CO;2-MSuche in Google Scholar

Published Online: 2011-11-16
Published in Print: 2012-1-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0101-7/pdf?lang=de
Button zum nach oben scrollen