Home Mixed-ligand complexes of boric acid with organic biomolecules
Article
Licensed
Unlicensed Requires Authentication

Mixed-ligand complexes of boric acid with organic biomolecules

  • Dursun Köse EMAIL logo and Birgül Zümreoglu-Karan
Published/Copyright: November 16, 2011
Become an author with De Gruyter Brill

Abstract

Boric acid forms meta-stable complexes with biomolecules like amino and hydroxy acids and stable complexes with the diol group containing carbohydrates, vitamins, and nucleotides, yielding mono-chelate (1: 1 complex) or bis-chelate (1: 2 complex) structures with negatively charged tetrahedral borate anions. Here we report water-soluble, bio-available mixed-ligand boron adducts for potential nutritional and/or pharmaceutical applications. The complexes were prepared by complete esterification of boric acid with a number of acyclic- and cyclic hydroxy-functionalized biomolecules employing sodium as the counter ion. Structural and thermal properties of the complexes were investigated using chemical analysis, 11B NMR, FTIR, and TGA-DTA techniques. Complexes containing salicylic acid as one of the ligands displayed higher thermal and hydrolytic stabilities.

[1] Amaral, A. F., Marques, M. M., da Silva, J. A. L., & da Silva, J. J. R. F. (2008). Interactions of D-ribose with polyatomic anions, and alkaline and alkaline earth cations: possible clues to environmental synthesis conditions in the pre-RNA world. New Journal of Chemistry, 32, 2043–2049. DOI: 10.1039/B809636H. http://dx.doi.org/10.1039/b809636h10.1039/b809636hSearch in Google Scholar

[2] Bishop, M., Bott, S. G., & Barron, A. R. (2000). Structural characterization of borate esters in which sodium acts as a support to the structural framework. Journal of the Chemical Society, Dalton Transactions, 2000, 3100–3105. DOI: 10.1039/B003375H. http://dx.doi.org/10.1039/b003375h10.1039/b003375hSearch in Google Scholar

[3] Bishop, M., Shahid, N., Yang, J., & Barron, A. R. (2004). Determination of the mode and efficacy of the cross-linking of guar by borate using MAS 11B NMR of borate cross-linked guar in combination with solution 11B NMR of model systems. Dalton Transactions, 2004, 2621–2634. DOI: 10.1039/B406952H. http://dx.doi.org/10.1039/b406952h10.1039/B406952HSearch in Google Scholar

[4] Böeseken, J. (1949). The use of boric acid for the determination of the configuration of carbohydrates. Advances in Carbohydrate Chemistry, 4, 189–210. DOI: 10.1016/S0096-5332(08)60049-1. 10.1016/S0096-5332(08)60049-1Search in Google Scholar

[5] Bolaños, L., Lukaszewski, K., Bonilla, I., & Blevins, D. (2004). Why boron? Plant Physiology and Biochemistry, 42, 907–912. DOI: 10.1016/j.plaphy.2004.11.002. http://dx.doi.org/10.1016/j.plaphy.2004.11.00210.1016/j.plaphy.2004.11.002Search in Google Scholar

[6] Chapelle, S., & Verchere, J. F. (1988). A 11B- and 13C-NMR determination of the structures of borate complexes of pentoses and related sugars. Tetrahedron, 44, 4469–4482. DOI: 10.1016/S0040-4020(01)86149-4. http://dx.doi.org/10.1016/S0040-4020(01)86149-410.1016/S0040-4020(01)86149-4Search in Google Scholar

[7] Chiappe, C., Signori, F., Valentini, G., Marchetti, L., Pomelli, C. S., & Bellina, F. (2010). Novel (glycerol)borate-based ionic liquids: An experimental and theoretical study. The Journal of Physycal Chemistry B, 114, 5082–5088. DOI: 10.1021/Jp100809x. http://dx.doi.org/10.1021/jp100809x10.1021/jp100809xSearch in Google Scholar

[8] Davis, H. B., & Mott, C. J. B. (1980). Interaction of boric acid and borates with carbohydrates and related substances. Journal of the Chemical Society, Faraday Transactions 1,76, 1991–2002. DOI: 10.1039/F19807601991. 10.1039/f19807601991Search in Google Scholar

[9] Dembitsky, V. M., Smoum, R., Al-Quntar, A. A., Abu Ali, H., Pergament, I., & Srebnik, M. (2002). Natural occurrence of boron-containing compounds in plants, algae and microorganisms. Plant Science, 163, 931–942. DOI: 10.1016/S0168-9452(02)00174-7. http://dx.doi.org/10.1016/S0168-9452(02)00174-710.1016/S0168-9452(02)00174-7Search in Google Scholar

[10] Diehl, H. (1937). The chelate rings. Chemical Reviews, 21, 39–111. DOI: 10.1021/cr60068a003. http://dx.doi.org/10.1021/cr60068a00310.1021/cr60068a003Search in Google Scholar

[11] Eaton, G. R. (1969). NMR of boron compounds. Journal of Chemical Education, 46, 547–556. DOI: 10.1021/ed046p547. http://dx.doi.org/10.1021/ed046p54710.1021/ed046p547Search in Google Scholar

[12] Hunt, C. D. (2003). Dietary boron: An overview of the evidence for its role in immune function. The Journal of Trace Elements in Experimental Medicine, 16, 291–306. DOI: 10.1002/jtra.10041. http://dx.doi.org/10.1002/jtra.1004110.1002/jtra.10041Search in Google Scholar

[13] Kennedy, J. D. (1987). In J. Mason (Ed.), Multinuclear NMR. New York, NY, USA: Plenum Press. Search in Google Scholar

[14] Kliegel, W. (1980). Bor in Biologie, Medizin und Pharmazie: Physiologische Wirkungen und Anwendung von Borverbindungen. New York, NY, USA: Springer. 10.1007/978-3-662-11266-3Search in Google Scholar

[15] Köse, D. A. (2008). In Preparation and structure investigation of biopotent boron compounds with hydroxy functionalized organic molecules. PhD thesis. Ankara, Turkey: Hacettepe University. Search in Google Scholar

[16] Köse, D. A., & Zümreoglu-Karan, B. (2009). Complexation of boric acid with vitamin C. New Journal of Chemistry, 33, 1874–1881. DOI: 10.1039/B902812A. http://dx.doi.org/10.1039/b902812a10.1039/b902812aSearch in Google Scholar

[17] Köse, D. A., Zümreoglu-Karan, B., & Hökelek, T. (2011). A comparative examination of mono- and bis-chelate salicylatoborate complexes and the crystal structure of layered magnesium bis-salicylatoborate. Inorganica Chimica Acta, 375, 236–241. DOI: 10.1016/j.ica.2011.05.012. http://dx.doi.org/10.1016/j.ica.2011.05.01210.1016/j.ica.2011.05.012Search in Google Scholar

[18] Köse, D. A., Zümreoglu-Karan, B., Hökelek, T., & Şahin, E. (2010). BBoric acid complexes with organic biomolecules: Mono-chelate complexes with salicylic and glucuronic acids. Inorganica Chimica Acta, 363, 4031–4037. DOI: 10.1016/j.ica.2010.08.001. http://dx.doi.org/10.1016/j.ica.2010.08.00110.1016/j.ica.2010.08.001Search in Google Scholar

[19] Matsunaga, T., & Nagata, T. (1995). In vivo 11B NMR observation of plant tissue. Analytical Sciences, 11, 889–892. DOI: 10.2116/analsci.11.889. http://dx.doi.org/10.2116/analsci.11.88910.2116/analsci.11.889Search in Google Scholar

[20] Nord, F. F., & Zittle, C. A. (1951). Reaction of borate with substances of biological interest. Advances in Enzymology and Related Areas of Molecular Biology, 12, 493–527. DOI: 10.1002/9780470122570.ch9. 10.1002/9780470122570.ch9Search in Google Scholar PubMed

[21] Oertel, R. P. (1972). Raman study of aqueous monoboratepolyol complexes. Equilibriums in the monoborate-1,2-ethanediol system. Inorganic Chemistry, 11, 544–549. DOI: 10.1021/ic50109a024. http://dx.doi.org/10.1021/ic50109a02410.1021/ic50109a024Search in Google Scholar

[22] Queen, A., Davies, L., & Con, A. (1979). The kinetics of the reactions of boric acid with 5-substituted salicylate ions. Canadian Journal of Chemistry, 57, 920–923. DOI: 10.1139/v79-151. http://dx.doi.org/10.1139/v79-15110.1139/v79-151Search in Google Scholar

[23] Ricardo, A., Carrigan, M. A., Olcott, A. N., & Benner, S. A. (2004). Borate minerals stabilize ribose. Science, 303, 196. DOI: 10.1126/science.1092464. http://dx.doi.org/10.1126/science.109246410.1126/science.1092464Search in Google Scholar

[24] Ross, S. D. (1972). Borates. In V. C. Farmer (Ed.), The infrared spectra of minerals (pp. 205–226). London, UK: The Mineralogical Society. Search in Google Scholar

[25] Shao, C. Y., Matsuoka, S., Miyazaki, Y., & Yoshimura, K. (2001). Studies on the complexation of boric acid with polyhydroxyl compounds. Analytical Sciences, 17(Supplement), i1475–i1478. Search in Google Scholar

[26] Schwartz, E. M., Vitola, I. M., Sergeiyeva, G. S., Piloyan, G. O., & Drozdova, O. V. (1986). Thermal decomposition of dicitratoborates. Journal of Thermal Analysis and Calorimetry, 31, 351–359. DOI: 10.1007/BF01911067. http://dx.doi.org/10.1007/BF0191106710.1007/BF01911067Search in Google Scholar

[27] Smith, W. (1977). Boron-11 NMR. Journal of Chemical Education, 54, 469–473. DOI: 10.1021/ed054p469. http://dx.doi.org/10.1021/ed054p46910.1021/ed054p469Search in Google Scholar

[28] Steinberg, H., & Hunter, D. L. (1957) Preparation and rate of hydrolysis of boric acid esters. Industrial & Engineering Chemistry, 49, 174–181. DOI: 10.1021/ie50566a023. http://dx.doi.org/10.1021/ie50566a02310.1021/ie50566a023Search in Google Scholar

[29] Tossell, J. A. (2006). Boric acid adsorption on humic acids: Ab initio calculation of structures, stabilities, 11B NMR and 11B, 10B isotopic fractionations of surface complexes. Geochimica et Cosmochimica Acta, 70, 5089–5103. DOI: 10.1016/j.gca.2006.08.014. http://dx.doi.org/10.1016/j.gca.2006.08.01410.1016/j.gca.2006.08.014Search in Google Scholar

[30] van den Berg, R., Peters, J. A., & van Bekkum, H. (1994). The structure and (local) stability constants of borate esters of mono- and di-saccharides as studied by 11B and 13C NMR spectroscopy. Carbohydrate Research, 253, 1–12. DOI: 10.1016/0008-6215(94)80050-2. http://dx.doi.org/10.1016/0008-6215(94)80050-210.1016/0008-6215(94)80050-2Search in Google Scholar

[31] Van Duin, M, Peters, J. A., Kieboom, A. P.G., & Van Bekkum, H. (1984). Studies on borate esters I: The pH dependence of the stability of esters of boric acid and borate in aqueous medium as studied by 11B NMR. Tetrahedron, 40, 2901–2911. DOI: 10.1016/S0040-4020(01)91300-6. http://dx.doi.org/10.1016/S0040-4020(01)91300-610.1016/S0040-4020(01)91300-6Search in Google Scholar

[32] Van Duin, M., Peters, J. A., Kieboom, A. P.G., & Van Bekkum, H. (1985). Studies on borate esters II: Structure and stability of borate esters of polyhydroxycarboxylates and related polyols in aqueous alkaline media as studied by 11B NMR. Tetrahedron, 41, 3411–3421 DOI: 10.1016/S0040-4020(01)96693-1. http://dx.doi.org/10.1016/S0040-4020(01)96693-110.1016/S0040-4020(01)96693-1Search in Google Scholar

[33] Vasiľeva, V. S., Ksenofontov, M. A., Ostrovskaya, L. E., Ostrovskii, S. A., & Khatenko, A. S. (2006). Spectral signs of reaction between dihydric phenols and boric acid. Journal of Applied Spectroscopy, 73, 292–296. DOI: 10.1007/s10812-006-0071-7. http://dx.doi.org/10.1007/s10812-006-0071-710.1007/s10812-006-0071-7Search in Google Scholar

[34] Verchere, J. F., & Sauvage, J. P. (1988). A 11B and 13C NMR determination of the structures of borate complexes of pentoses and related sugars. Tetrahedron, 44, 4469–4482. DOI: 10.1016/S0040-4020(01)86149-4. http://dx.doi.org/10.1016/S0040-4020(01)86149-410.1016/S0040-4020(01)86149-4Search in Google Scholar

[35] Woods, W. G. (1996). Review of possible boron speciation relating to its essentiality. Journal of Trace Element in Experimental Medicine, 9, 153–163. DOI: 10.1002/(SICI)1520-670X. http://dx.doi.org/10.1002/(SICI)1520-670X(1996)9:4<153::AID-JTRA3>3.0.CO;2-S10.1002/(SICI)1520-670X(1996)9:4<153::AID-JTRA3>3.0.CO;2-SSearch in Google Scholar

[36] Zviedre, I. I., Belskii, V. K., & Shvarts, E. M. (1999). Synthesis and crystal structure of sodium di(L-malato)borate Na[(C4H4O5)2B]. Russian Journal of Inorganic Chemistry, 44, 1420–1424. Search in Google Scholar

[37] Zviedre, I. I., & Belyakov, S. V. (2009a). Crystal structure of triethylammonium dicitratoborate monohydrate. Journal of Structural Chemistry, 50, 114–119. DOI: 10.1007/s10947-009-0015-1. http://dx.doi.org/10.1007/s10947-009-0015-110.1007/s10947-009-0015-1Search in Google Scholar

[38] Zviedre, I. I., & Belyakov. S. V. (2009b). Synthesis and crystal structure of methylammonium dicitratoborate. Russian Journal of Inorganic Chemistry, 54, 1390–1395. DOI: 10.1134/S0036023609090083. http://dx.doi.org/10.1134/S003602360909008310.1134/S0036023609090083Search in Google Scholar

[39] Zviedre, I., Belyakov, S., & Tokmakov, A. (2007). Synthesis and crystal structure of 4-aminoquinolinium bis(citrato)borate monohydrate. Acta Crystallographica A, 63, s233–s234. 10.1107/S0108767307094706Search in Google Scholar

[40] Zviedre, I., Belyakov, S., & Zarina, I. (2009). Crystal structure of hexaaquazinc(II) bis(citrato)borate dihydrate, [Zn(H2O)6] [(C6H6O7)2B]2 · 2H2O. Zeitschrift fur Kristallographie, New Crystal Structures, 224, 627–628. DOI: 10.1524/ncrs.2009. 0276. Search in Google Scholar

Published Online: 2011-11-16
Published in Print: 2012-1-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0108-0/html
Scroll to top button