Abstract
Ten derivatives of N1 substituted/unsubstituted 5-(4-chlorophenyl)-3-(2-thienyl) pyrazoline were synthesised from chalcone-like intermediate and substituted phenyl hydrazines, hydrazine hydrate, and semi/thiosemicarbazide. The chemical structure of compounds was confirmed by means of IR, 1H NMR, mass spectroscopy, and elemental analysis. The antidepressant and anticonvulsant activities were investigated by Porsolt’s behavioural despair test (forced swimming) and maximum electroshock seizure test, respectively. Rota-Rod test was performed to assess any probable changes in motor coordination induced by the test compounds. Four compounds (IId, IIg, IIi, and IIj) exhibited good activity profile against depression and docking studies confirmed their consensual interaction with monoamine oxidase A. In addition, compounds IIc and IIe showed protection against MES-induced seizures.
[1] Amnerkar, N. D., & Bhusari, K. P. (2010). Synthesis, anticonvulsant activity and 3D-QSAR study of some prop-2-eneamido and 1-acetyl-pyrazolin derivatives of aminoben zothiazole. European Journal of Medicinal Chemistry, 45, 149–159. DOI: 10.1016/j.ejmech.2009.09.037. http://dx.doi.org/10.1016/j.ejmech.2009.09.03710.1016/j.ejmech.2009.09.037Search in Google Scholar PubMed
[2] Amr, A. E. E., Abdel-Latif, N. A., & Abdalla, M. M. (2006). Synthesis and antiandrogenic activity of some new 3-substituted androstano[17,16-c]-5′-aryl-pyrazoline and their derivatives. Bioorganic & Medicinal Chemistry, 14, 373–384. DOI: 10.1016/j.bmc.2005.08.024. http://dx.doi.org/10.1016/j.bmc.2005.08.02410.1016/j.bmc.2005.08.024Search in Google Scholar PubMed
[3] Bourin, M., Hascoët, M., Colombel, M. C., Coutts, R. T., & Baker, G. B. (2002). Clonidine potentiates the effects of tranylcypromine, phenelzine and two analogues in the forced swimming test in mice. Journal of Psychiatry & Neuroscience, 27, 178–185. Search in Google Scholar
[4] Casimiro-Garcia, A., Dudley, D. A., Heemstra, R. J., Filipski, K. J., Bigge, C. F., & Edmunds, J. J. (2006). Progress in the discovery of factor Xa inhibitors. Expert Opinion on Therapeutic Patents, 16, 119–145. DOI: 10.1517/13543776.16.2.119. http://dx.doi.org/10.1517/13543776.16.2.11910.1517/13543776.16.2.119Search in Google Scholar
[5] Chimenti, F., Bolasco, A., Manna, F., Secci, D., Chimenti, P., Befani, O., Turini, P., Giovannini, V., Mondovì, B., Cirilli, R., & La Torre, F. (2004). Synthesis and selective inhibitory activity of 1-acetyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazole derivatives against monoamine oxidase. Journal of Medicinal Chemistry, 47, 2071–2074. DOI: 10.1021/jm031042b. http://dx.doi.org/10.1021/jm031042b10.1021/jm031042bSearch in Google Scholar PubMed
[6] Chimenti, F., Carradori, S., Secci, D., Bolasco, A., Bizzarri, B., Chimenti, P., Granese, A., Yáñez, M., & Orallo, F. (2010). Synthesis and inhibitory activity against human monoamine oxidase of N1-thiocarbamoyl-3,5-di(hetero)aryl-4,5-dihydro-(1H)-pyrazole derivatives. European Journal of Medicinal Chemistry, 45, 800–804. DOI: 10.1016/j.ejmech.2009.11.003. http://dx.doi.org/10.1016/j.ejmech.2009.11.00310.1016/j.ejmech.2009.11.003Search in Google Scholar PubMed
[7] Chimenti, F., Fioravanti, R., Bolasco, A., Manna, F., Chimenti, P., Secci, D., Rossi, F., Turini, P., Ortuso, F., Alcaro, S., & Cardia, M. C. (2008). Synthesis, molecular modeling studies and selective inhibitory activity against MAO of N1-propanoyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazole derivatives. European Journal of Medicinal Chemistry, 43, 2262–2267. DOI: 10.1016/j.ejmech.2007.12.026. http://dx.doi.org/10.1016/j.ejmech.2007.12.02610.1016/j.ejmech.2007.12.026Search in Google Scholar PubMed
[8] De Colibus, L., Li, M., Binda, C., Lustig, A., Edmondson, D. E., & Mattevi, A. (2005). Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proceedings of the National Academy of Sciences USA, 102, 12684–12689. DOI: 10.1073/pnas.0505975102. http://dx.doi.org/10.1073/pnas.050597510210.1073/pnas.0505975102Search in Google Scholar PubMed PubMed Central
[9] El-Wahab, A. H. F. A., Al-Fifi, Z. I. A., Bedair, A. H., Ali, F. M., Halawa, A. H. A., & El-Agrody, A. M. (2011). Synthesis, reactions and biological evaluation of some new naphtho[2,1-b]furan derivatives bearing a pyrazole nucleus. Molecules, 16, 307–318. DOI: 10.3390/molecules16010307. http://dx.doi.org/10.3390/molecules1601030710.3390/molecules16010307Search in Google Scholar PubMed PubMed Central
[10] Fioravanti, R., Bolasco, A., Manna, F., Rossi, F., Orallo, F., Ortuso, F., Alcaro, S., & Cirilli, R. (2010). Synthesis and biological evaluation of N-substituted-3,5-diphenyl-2-pyrazoline derivatives as cyclooxygenase (COX-2) inhibitors. European Journal of Medicinal Chemistry, 45, 6135–6138. DOI: 10.1016/j.ejmech.2010.10.005. http://dx.doi.org/10.1016/j.ejmech.2010.10.00510.1016/j.ejmech.2010.10.005Search in Google Scholar PubMed
[11] Fowler, J. S., Logan, J., Azzaro, A. J., Fielding, R. M., Zhu, W., Poshusta, A. K., Burch, D., Brand, B., Free, J., Asgharnejad, M., Wang, G. J., Telang, F., Hubbard, B., Jayne, M., King, P., Carter, P., Carter, S., Xu, Y., Shea, C., Muench, L., Alexoff, D., Shumay, E., Schueller, M., Warner, D., & Apelskog-Torres, K. (2010). Reversible inhibitors of monoamine oxidase-A (RIMAs): robust, reversible inhibition of human brain MAO-A by CX157. Neuropsychopharmacology, 35, 623–631. DOI: 10.1038/npp.2009.167. http://dx.doi.org/10.1038/npp.2009.16710.1038/npp.2009.167Search in Google Scholar PubMed PubMed Central
[12] Gok, S., Demet, M. M., Özdemir, A., & Turan-Zitouni, G. (2010). Evaluation of antidepressant-like effect of 2-pyrazoline derivatives. Medicinal Chemistry Research, 19, 94–101. DOI: 10.1007/s00044-009-9176-x. http://dx.doi.org/10.1007/s00044-009-9176-x10.1007/s00044-009-9176-xSearch in Google Scholar
[13] Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47, 1750–1759. DOI: 10.1021/jm030644s. http://dx.doi.org/10.1021/jm030644s10.1021/jm030644sSearch in Google Scholar
[14] Jia, Z., & Zhu, Q. (2010). ’Click’ assembly of selective inhibitors for MAO-A. Bioorganic & Medicinal Chemistry Letters, 20, 6222–6225. DOI: 10.1016/j.bmcl.2010.08.104. http://dx.doi.org/10.1016/j.bmcl.2010.08.10410.1016/j.bmcl.2010.08.104Search in Google Scholar
[15] Kaplancikli, Z. A., Özdemir, A., Turan-Zitouni, G., Altintop, M. D., & Can, O. D. (2010). New pyrazoline derivatives and their antidepressant activity. European Journal of Medicinal Chemistry, 45, 4383–4387. DOI: 10.1016/j.ejmech.2010.06.011. http://dx.doi.org/10.1016/j.ejmech.2010.06.01110.1016/j.ejmech.2010.06.011Search in Google Scholar
[16] Karuppasamy, M., Mahapatra, M., Yabanoglu, S., Ucar, G., Sinha, B. N., Basu, A., Mishra, N., Sharon, A., Kulandaivelu, U., & Jayaprakash, V. (2010). Development of selective and reversible pyrazoline based MAO-A inhibitors: Synthesis, biological evaluation and docking studies. Bioorganic & Medicinal Chemistry, 18, 1875–1881. DOI: 10.1016/j.bmc.2010.01.043. http://dx.doi.org/10.1016/j.bmc.2010.01.04310.1016/j.bmc.2010.01.043Search in Google Scholar
[17] Krall, R. L., Penry, J. K., White, B. G., Kupferberg, H. J., & Swinyard, E. A. (1978). Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia, 19, 409–428. DOI: 10.1111/j.1528-1157.1978.tb04507.x. http://dx.doi.org/10.1111/j.1528-1157.1978.tb04507.x10.1111/j.1528-1157.1978.tb04507.xSearch in Google Scholar
[18] Manna, F., Chimenti, F., Bolasco, A., Secci, D., Bizzarri, B., Befani, O., Turini, P., Mondovi, B., Alcaro, S., & Tafi, A. (2002). Inhibition of amine oxidases activity by 1-acetyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazole derivatives. Bioorganic & Medicinal Chemistry Letters, 12, 3629–3633. DOI: 10.1016/S0960-894X(02)00699-6. http://dx.doi.org/10.1016/S0960-894X(02)00699-610.1016/S0960-894X(02)00699-6Search in Google Scholar
[19] Motulsky, H. (1984). GraphPad InStat version 3.01 for Windows 95 (GraphPad software). San Diego, CA, USA: GraphPad Software, Inc. Search in Google Scholar
[20] Ozdemir, Z., Kandilci, H. B., Gumusel, B., Calis, U., & Bilgin, A. A. (2008). Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-thienyl) pyrazoline derivatives. Archiv der Pharmazie, 341, 701–707. DOI: 10.1002/ardp.200800068. http://dx.doi.org/10.1002/ardp.20080006810.1002/ardp.200800068Search in Google Scholar PubMed
[21] Petit-Demouliere, B., Chenu, F., & Bourin, M. (2005). Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology, 177, 245–255. DOI: 10.1007/s00213-004-2048-7. http://dx.doi.org/10.1007/s00213-004-2048-710.1007/s00213-004-2048-7Search in Google Scholar PubMed
[22] Porsolt, R. D., Bertin, A., & Jalfre, M. (1977). Behavioral despair in mice: a primary screening test for antidepressants. Archives Internationales de Pharmacodynamie et de Thérapie, 229, 327–336. Search in Google Scholar
[23] Prasad, Y. R., Rao, A. L., Prasoona, L., Murali, K., & Kumar, P. R. (2005). Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2″-hydroxy naphthalen-1″-yl)-1,5-diphenyl-2-pyrazolines. Bioorganic & Medicinal Chemistry Letters, 15, 5030–5034. DOI: 10.1016/j.bmcl.2005.08.040. http://dx.doi.org/10.1016/j.bmcl.2005.08.04010.1016/j.bmcl.2005.08.040Search in Google Scholar PubMed
[24] Rani, M., Yusuf, M., Khan, S. A., Sahota, P. P., & Pandove, G. (2011). Synthesis, studies and in-vitro antibacterial activity of N-substituted 5-(furan-2-yl)-phenyl pyrazolines. Arabian Journal of Chemistry, in press. DOI: 10.1016/j.jscs.2011.02.012. 10.1016/j.jscs.2011.02.012Search in Google Scholar
[25] Siddiqui, N., Alam, P., & Ahsan, W. (2009). Design, synthesis, and in-vivo pharmacological screening of N,3-(substituted diphenyl)-5-phenyl-1H-pyrazoline-1-carbothioamide derivatives. Archiv der Pharmazie, 342, 173–181. DOI: 10.1002/ardp.200800130. http://dx.doi.org/10.1002/ardp.20080013010.1002/ardp.200800130Search in Google Scholar PubMed
[26] Vogel, H. G. (2002). Rotarod method. In Drug discovery and evaluation: Pharmacological assays (pp. 398). New York, NY, USA: Springer. http://dx.doi.org/10.1007/3-540-29837-110.1007/3-540-29837-1Search in Google Scholar
[27] Youdim, M. B. H., Edmondson, D., & Tipton, K. F. (2006). The therapeutic potential of monoamine oxidase inhibitors. Nature Reviews Neuroscience, 7, 295–309. DOI: 10.1038/nrn-1883. http://dx.doi.org/10.1038/nrn1883Search in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Layered double hydroxides — multifunctional nanomaterials
- A novel reagent for spectroscopic determination of Mo(VI)
- Influence of chemical composition of nanocrystalline iron’s surface on the rates of two parallel reactions: nitriding and catalytic decomposition of ammonia
- Application of 2-(octylsulphanyl)benzoic acid as Pb2+ selective ionophore in hybrid membrane system
- Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water
- Treatment of acidic palm oil for fatty acid methyl esters production
- Synthesis, structure, and luminescent properties of two novel polynuclear complexes of 1,3-di(pyridin-2-yl)propane-1,3-dione
- Mixed-ligand complexes of boric acid with organic biomolecules
- Ultrasound-assisted rapid synthesis of β-aminoketones with direct-type catalytic Mannich reaction using bismuth(III) triflate in aqueous media at room temperature
- Design, synthesis, preliminary pharmacological evaluation, and docking studies of pyrazoline derivatives
- One-pot synthesis and luminescent spectra of 3-allyl substituted quinazoline-2,4-dione derivatives as allyl capping agents
Articles in the same Issue
- Layered double hydroxides — multifunctional nanomaterials
- A novel reagent for spectroscopic determination of Mo(VI)
- Influence of chemical composition of nanocrystalline iron’s surface on the rates of two parallel reactions: nitriding and catalytic decomposition of ammonia
- Application of 2-(octylsulphanyl)benzoic acid as Pb2+ selective ionophore in hybrid membrane system
- Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water
- Treatment of acidic palm oil for fatty acid methyl esters production
- Synthesis, structure, and luminescent properties of two novel polynuclear complexes of 1,3-di(pyridin-2-yl)propane-1,3-dione
- Mixed-ligand complexes of boric acid with organic biomolecules
- Ultrasound-assisted rapid synthesis of β-aminoketones with direct-type catalytic Mannich reaction using bismuth(III) triflate in aqueous media at room temperature
- Design, synthesis, preliminary pharmacological evaluation, and docking studies of pyrazoline derivatives
- One-pot synthesis and luminescent spectra of 3-allyl substituted quinazoline-2,4-dione derivatives as allyl capping agents