Abstract
3-Nitro-N-(phenylsulphonyloxy)phthalimide (IIIa) and N-(phenylsulphonyloxy)phthalimide (IIIb) were synthesised as key intermediates in good yield. Their structures were confirmed by 1H NMR and FTIR spectral data. The reaction of the key intermediates with allylamine produced 3-allyl-5-nitroquinazoline-2,4-(1H,3H)-dione (IVa) and 3-allylquinazoline-2,4-(1H,3H)-dione (IVb), respectively. Luminescence emission and excitation spectra of IVa and IVb are also presented.
[1] Buess, C. M., & Bauer, L. (1955). The action of arenesulfonyl chloride on phthalohydroxamic acid, succinohydroxamic acid and “phthalic anhydride oxime”. The Journal of Organic Chemistry, 20, 33–37. DOI: 10.1021/jo01119a007. http://dx.doi.org/10.1021/jo01119a00710.1021/jo01119a007Search in Google Scholar
[2] Buriak, J. M. (2002). Organometallic chemistry on silicon and germanium surfaces. Chemical Reviews, 102, 1271–1308. DOI: 10.1021/cr000064s. http://dx.doi.org/10.1021/cr000064s10.1021/cr000064sSearch in Google Scholar
[3] Buriak, J. M., Stewart, M. P., Geders, T. W., Allen, M. J., Choi, H. C., Smith, J., Raftery, D., & Canham, L. T. (1999). Lewis acid mediated hydrosilylation on porous silicon surfaces. Journal of the American Chemical Society, 121, 11491–11502. DOI: 10.1021/ja992188w. http://dx.doi.org/10.1021/ja992188w10.1021/ja992188wSearch in Google Scholar
[4] Connolly, D. J., Cusack, D., O’sullivan, T. P., & Guiry, P. J. (2005). Synthesis of quinazolinones and quinazolines. Tetrahedron, 61, 10153–10202. DOI: 10.1016/j.tet.2005.07.010. http://dx.doi.org/10.1016/j.tet.2005.07.01010.1016/j.tet.2005.07.010Search in Google Scholar
[5] Fahmy, A. F. M. (2006). Heterocycles as versatile building blocks in different synthetic strategies. ARKIVOC, 2006(vii), 395–415. 10.3998/ark.5550190.0007.729Search in Google Scholar
[6] Fahmy, A. F. M., Aly, N. F., Nada, A., & Aly, N. Y. (1977). Phthalimides. I. Base-catalyzed Lossen rearrangement and acid-catalyzed Beckmann rearrangement with N-(arylsulfonyloxy)phthalimides. Bulletin of the Chemical Society of Japan, 50, 2678–2681. DOI: 10.1246/bcsj.50.2678. http://dx.doi.org/10.1246/bcsj.50.267810.1246/bcsj.50.2678Search in Google Scholar
[7] Fahmy, A. F. M., Aly, N. F., & Orabi, M. O. (1978). Phthalimides. III. Aminolysis, hydrazinolysis, pyrolysis, and ac tion of Grignard reagents on phthalimide derivatives. Bulletin of the Chemical Society of Japan, 51, 2148–2152. DOI: 10.1246/bcsj.51.2148. http://dx.doi.org/10.1246/bcsj.51.214810.1246/bcsj.51.2148Search in Google Scholar
[8] Farouk, M. (2009). Bioactive heterocyclic’s based nanotechnology. Synthesis and in-vitro evaluation of new 3-substituted quinazolinediones. In First International Conference For NanoTechnology Industries (ICNI 2009), 5–7 April 2009. King Saud University, Riyadh, Saudi Arabia. Search in Google Scholar
[9] Fieser, L. F., & Fieser, M. (1967). Reagents for organic synthesis (pp. 485–486). New York, NY, USA: Wiley. Search in Google Scholar
[10] Gütschow, M. (1999). One-pot reactions of N-(mesyloxy)phthalimides with secondary amines to 2-ureidobenzamides, 2-ureidobenzoic acids, ethyl 2-ureidobenzoates, or isatoic anhydrides. The Journal of Organic Chemistry, 64, 5109–5115. DOI: 10.1021/jo9900634. http://dx.doi.org/10.1021/jo990063410.1021/jo9900634Search in Google Scholar
[11] Jain, K. S., Bariwal, J. B., Kathiravan, M. K., Phoujdar, M. S., Sahne, R. S., Chauhan, B. S., Shah, A. K., & Yadav, M. R. (2008). Recent advances in selective α1-adrenoreceptor antagonists as antihypertensive agents. Bioorganic & Medicinal Chemistry, 16, 4759–4800. DOI: 10.1016/j.bmc.2008.02.091. http://dx.doi.org/10.1016/j.bmc.2008.02.09110.1016/j.bmc.2008.02.091Search in Google Scholar
[12] Katritzky, A. R., & Rees, C. W. (Eds.) (1984). Comprehensive heterocyclic chemistry: The structure, reactions, synthesis and uses of heterocyclic compounds (Vol. 3). Oxford, UK: Pergamon Press. Search in Google Scholar
[13] Kerrigan, J. E., Walters, M. C., Forrester, K. J., Crowder, J. B., & Christopher, L. J. (2000). 6-Acylamino-2-[(alkylsulfonyl)oxy]-1H-isoindole-1,3-dione mechanism-based inhibitors of human leukocyte elastase. Bioorganic & Medicinal Chemistry Letters, 10, 27–30. DOI: 10.1016/S0960-894X(99)00588-0. http://dx.doi.org/10.1016/S0960-894X(99)00588-010.1016/S0960-894X(99)00588-0Search in Google Scholar
[14] Koay, N., & Campeau, L.-C. (2011). Efficient preparation of 3-substituted quinazolinediones directly from anthranilic acids and isocyanates. Journal of Heterocyclic Chemistry, 48, 473–478. DOI: 10.1002/jhet.551. http://dx.doi.org/10.1002/jhet.55110.1002/jhet.551Search in Google Scholar
[15] Martyn, D. C., Moore, M. J. B., & Abell, A. D. (1999). Succinimide and saccharin-based enzyme-activated inhibitors of serine proteases. Current Pharmaceutical Design, 5, 405–416. Search in Google Scholar
[16] Neumann, U., & Gütschow, M. (1994). N-(Sulfonyloxy)phthalimides and analogues are potent inactivators of serine proteases. The Journal of Biological Chemistry, 269, 21561–21567. 10.1016/S0021-9258(17)31841-0Search in Google Scholar
[17] O’Farrell, N., Houlton, A., & Horrocks, B. R. (2006). Silicon nanoparticles: applications in cell biology and medicine. International Journal of Nanomedicine, 1, 451–472. DOI: 10.2147/nano.2006.1.4.451. http://dx.doi.org/10.2147/nano.2006.1.4.45110.2147/nano.2006.1.4.451Search in Google Scholar
[18] Perrin, D. D., & Armarego, W. L. F. (1988). Purification of laboratory chemicals (3rd ed.). Oxford, UK: Pergamon Press. Search in Google Scholar
[19] Rivero, I. A., Guerrero, L., Espinoza, K. A., Meza, M. C., & Rodríguez, J. R. (2009). Alkylation of 2,4-(1H,3H)-quinazolinediones with dialkyl carbonates under microwave irradiations. Molecules, 14, 1860–1868. DOI: 10.3390/molecules14051860. http://dx.doi.org/10.3390/molecules1405186010.3390/molecules14051860Search in Google Scholar
[20] Sheradsky, T., & Itzhak, N. (1986). Reaction of carbanions with N-tosyloxyphthalimide. Formation of 3,3-disubstituted quinoline-2,4-diones. Journal of the Chemical Society, Perkin Transactions 1, 1986, 13–16. DOI: 10.1039/P19860000013. http://dx.doi.org/10.1039/p1986000001310.1039/p19860000013Search in Google Scholar
[21] Shiau, C. Y., Chern, J. W., Liu, K. C., Chan, C. H., Yen, M. H., Cheng, M. C., & Wang, Y. (1990). Studies on quinazolinones. 2. Synthesis of 2-(4-benzylpiperazin-1-ylmethyl)-2,3-dihydro-5H-oxazolo[2,3-b]quinazolin-5-one and -2,3-dihydro-5H-thiazolo[2,3-b]quinazolin-5-one. Journal of Heterocyclic Chemistry, 27, 1467–1472. DOI: 10.1002/jhet.5570270552. http://dx.doi.org/10.1002/jhet.557027055210.1002/jhet.5570270552Search in Google Scholar
[22] Vagnoni, L. M., Gronostaj, M., & Kerrigan, J. E. (2001). 6-Acylamino-2-[(ethylsulfonyl)oxy]-1H-isoindole-1,3-diones mechanism-based inhibitors of human leukocyte elastase and cathepsin G: Effect of chirality in the 6-acylamino substituent on inhibitory potency and selectivity. Bioorganic & Medicinal Chemistry, 9, 637–645. DOI: 10.1016/S0968-0896(00)00281-9. http://dx.doi.org/10.1016/S0968-0896(00)00281-910.1016/S0968-0896(00)00281-9Search in Google Scholar
[23] Vogel, A. I., Furniss, B. S., Hannaford, A. J., Smith, P. W. G., & Tatchell, A. R. (1989). Vogel’s textbook of practical organic chemistry (5th ed.). Harlow, UK: Pearson Education Limited. Search in Google Scholar
[24] Werbel, L. M. (1967). Example of sulfur elimination. Reaction of alkyl isothiocyanates with anthranilic acid. The Journal of Organic Chemistry, 32, 462–463. DOI: 10.1021/jo01288a046. http://dx.doi.org/10.1021/jo01288a04610.1021/jo01288a046Search in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Layered double hydroxides — multifunctional nanomaterials
- A novel reagent for spectroscopic determination of Mo(VI)
- Influence of chemical composition of nanocrystalline iron’s surface on the rates of two parallel reactions: nitriding and catalytic decomposition of ammonia
- Application of 2-(octylsulphanyl)benzoic acid as Pb2+ selective ionophore in hybrid membrane system
- Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water
- Treatment of acidic palm oil for fatty acid methyl esters production
- Synthesis, structure, and luminescent properties of two novel polynuclear complexes of 1,3-di(pyridin-2-yl)propane-1,3-dione
- Mixed-ligand complexes of boric acid with organic biomolecules
- Ultrasound-assisted rapid synthesis of β-aminoketones with direct-type catalytic Mannich reaction using bismuth(III) triflate in aqueous media at room temperature
- Design, synthesis, preliminary pharmacological evaluation, and docking studies of pyrazoline derivatives
- One-pot synthesis and luminescent spectra of 3-allyl substituted quinazoline-2,4-dione derivatives as allyl capping agents
Articles in the same Issue
- Layered double hydroxides — multifunctional nanomaterials
- A novel reagent for spectroscopic determination of Mo(VI)
- Influence of chemical composition of nanocrystalline iron’s surface on the rates of two parallel reactions: nitriding and catalytic decomposition of ammonia
- Application of 2-(octylsulphanyl)benzoic acid as Pb2+ selective ionophore in hybrid membrane system
- Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water
- Treatment of acidic palm oil for fatty acid methyl esters production
- Synthesis, structure, and luminescent properties of two novel polynuclear complexes of 1,3-di(pyridin-2-yl)propane-1,3-dione
- Mixed-ligand complexes of boric acid with organic biomolecules
- Ultrasound-assisted rapid synthesis of β-aminoketones with direct-type catalytic Mannich reaction using bismuth(III) triflate in aqueous media at room temperature
- Design, synthesis, preliminary pharmacological evaluation, and docking studies of pyrazoline derivatives
- One-pot synthesis and luminescent spectra of 3-allyl substituted quinazoline-2,4-dione derivatives as allyl capping agents