Abstract
Acidic crude palm oil (ACPO) produced from palm oil mills with an acid value of 18 mg g−1 was considered to be a possible feedstock for biodiesel production. Due to its high acidity, conventional transesterification cannot be applied directly for biodiesel production. Methane sulphonic acid (MSA, CH3SO3H) is used to reduce the acidity prior to the alkaline transesterification reaction. The laboratory-scale experiments involved an MSA to ACPO dosage of 0.25–3.5 %, a molar ratio (methanol to ACPO) from 4: 1 to 20: 1, reaction temperature of 40–80°C, reaction time of 3–150 min, and stirrer speed of 100–500 min−1. The optimum esterification reaction conditions were 1 % of catalyst to ACPO, with a molar ratio of methanol to ACPO of 8: 1, a stirring speed of 300 min−1, for 30 min and at 60°C. Under these conditions, the FFA content was reduced from 18 mg g−1 to less than 1 mg g−1 and with a yield of 96 %. The biodiesel produced met the EN14214 standard specifications. MSA was recycled for three times without losing its activity. The biodiesel produced in a two-stage process has a low acid value (0.14 mg g−1).
[1] Canakci, M. (2007). The potential of restaurant waste lipids as biodiesel feedstocks. Bioresource Technology, 98, 183–190. DOI: 10.1016/j.biortech.2005.11.022. http://dx.doi.org/10.1016/j.biortech.2005.11.02210.1016/j.biortech.2005.11.022Search in Google Scholar PubMed
[2] Chew, T. L., & Bhatia, S. (2008). Catalytic processes towards the production of biofuels in a palm oil and oil palm biomassbased biorefinery. Bioresource Technology, 99, 7911–7922. DOI: 10.1016/j.biortech.2008.03.009. http://dx.doi.org/10.1016/j.biortech.2008.03.00910.1016/j.biortech.2008.03.009Search in Google Scholar PubMed
[3] Chongkhong, S., Tongurai, C., Chetpattananondh, P., & Bunyakan, C. (2007). Biodiesel production by esterification of palm oil fatty acid distillate. Biomass and Bioenergy, 31, 563–568. DOI: 10.1016/j.biombioe.2007.03.001. http://dx.doi.org/10.1016/j.biombioe.2007.03.00110.1016/j.biombioe.2007.03.001Search in Google Scholar
[4] Di Serio, M., Tesser, R., Pengmei, L., & Santacesaria, E. (2008) Heterogeneous catalyst for biodiesel production. Energy & Fuels, 22, 207–217. DOI: 10.1021/ef700250g. http://dx.doi.org/10.1021/ef700250g10.1021/ef700250gSearch in Google Scholar
[5] Demirbas, A. (2009). Biohydrogen for future engine fuel demands. London, UK: Springer. DOI: 10.1007/978-1-84882-511-6. 10.1007/978-1-84882-511-6Search in Google Scholar
[6] Elsheikh, Y. A., Man, Z., Bustam, M. A., Yusup, S., & Wilfred, C. D. (2011). Brønsted imidazolium ionic liquids: Synthesis and comparison of their catalytic activities as precatalyst for biodiesel production through two stage process. Energy Conversion and Management, 52, 804–809. DOI: 10.1016/j.enconman.2010.08.005. http://dx.doi.org/10.1016/j.enconman.2010.08.00510.1016/j.enconman.2010.08.005Search in Google Scholar
[7] European Committee for Standardization (2008). European standard: Automotive fuels — Fatty acid methyl esters (FAME) for diesel engines — Requirements and test methods EN 14214:2008+A1:2009. Brussels, Belgium. Search in Google Scholar
[8] European Committee for Standardization (2009). European standards. Retrieved October, 2011, from http://www.cen.eu/cen/Products/Search/Pages/default.aspx Search in Google Scholar
[9] Guan, G., Kusakabe, K., Sakurai, N., & Moriyama, K. (2009) Transesterification of vegetable oil to biodiesel fuel using acid catalysts in presence of dimethyl ether. Fuel, 88, 81–86. DOI: 10.1016/j.fuel.2008.07.021. http://dx.doi.org/10.1016/j.fuel.2008.07.02110.1016/j.fuel.2008.07.021Search in Google Scholar
[10] Han, M., Yi, W., Wu, Q., Liu, Y., Hong, Y., & Wang, D (2009). Preparation of biodiesel from waste oils catalyzed by a Brønsted acidic ionic liquid. Bioresource Technology, 100, 2308–2310. DOI: 10.1016/j.biortech.2008.10.046. http://dx.doi.org/10.1016/j.biortech.2008.10.04610.1016/j.biortech.2008.10.046Search in Google Scholar PubMed
[11] Hayyan, A., Alam, Md. Z., Mirghani, M. E. S., Kabbashi, N. A., Hakimi, N. I. N. M., Siran, Y. M., & Tahiruddin, S. (2010a) Sludge palm oil as a renewable raw material for biodiesel production by two-step processes. Bioresource Technology, 101, 7804–7811. DOI: 10.1016/j.biortech.2010.05.045. http://dx.doi.org/10.1016/j.biortech.2010.05.04510.1016/j.biortech.2010.05.045Search in Google Scholar PubMed
[12] Hayyan, A., Alam, Md. Z., Mirghani, M. E. S., Kabbashi, N. A., Hakimi, N. I. N. M., Siran, Y. M., & Tahiruddin, S. (2011a) Reduction of high content of free fatty acid in sludge palm oil via acid catalyst for biodiesel production. Fuel Processing Technology, 92, 920–924. DOI: 10.1016/j.fuproc.2010.12.011. http://dx.doi.org/10.1016/j.fuproc.2010.12.01110.1016/j.fuproc.2010.12.011Search in Google Scholar
[13] Hayyan, M., Mjalli, F. S., Hashim, M. A., & AlNashef, I. M (2010b). A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Processing Technology, 91, 116–120. DOI: 10.1016/j.fuproc.2009.09.002. http://dx.doi.org/10.1016/j.fuproc.2009.09.00210.1016/j.fuproc.2009.09.002Search in Google Scholar
[14] Hayyan, A., Mjalli, F. S., Hashim, M. A., Hayyan, M., AlNashef, I. M., Al-Zahrani, S. M., & Al-Saadi, M. A. (2011b). Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production. Bioresource Technology, 102, 9564–9570. DOI: 10.1016/j.biortech.2011.07.074. http://dx.doi.org/10.1016/j.biortech.2011.07.07410.1016/j.biortech.2011.07.074Search in Google Scholar
[15] Kuntom, A., Lin, S. W., Ai, T. Y., Idris, N. A., Yusof, M., Sue, T. T., & Ibrahim, N. A. (2005). Test methods. Bangi, Malaysia: Malaysian palm oil board (MPOB). Search in Google Scholar
[16] Liu, K. S. (1994). Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials. Journal of the American Oil Chemists’ Society, 71, 1179–1187. DOI: 10.1007/BF02540534. http://dx.doi.org/10.1007/BF0254053410.1007/BF02540534Search in Google Scholar
[17] Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource Technology, 70, 1–15. DOI: 10.1016/S0960-8524(99)00025-5. http://dx.doi.org/10.1016/S0960-8524(99)00025-510.1016/S0960-8524(99)00025-5Search in Google Scholar
[18] Mjalli, F. S., & Hussain, M. A. (2009). Approximate predictive versus self-tuning adaptive control strategies of biodiesel reactors. Industrial & Engineering Chemistry Research, 48, 11034–11047. DOI: 10.1021/ie900930k. http://dx.doi.org/10.1021/ie900930k10.1021/ie900930kSearch in Google Scholar
[19] Mjalli, F. S., San, L. K., Yin, K. C., & Hussain, M. A. (2009) Dynamics and control of a biodiesel transesterification reactor. Chemical Engineering & Technology, 32, 13–26. DOI: 10.1002/ceat.200800243. http://dx.doi.org/10.1002/ceat.20080024310.1002/ceat.200800243Search in Google Scholar
[20] Naik, M., Meher, L. C., Naik, S. N., & Das, L. M. (2008) Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil. Biomass and Bioenergy, 32, 354–357. DOI: 10.1016/j.biombioe.2007.10.006. http://dx.doi.org/10.1016/j.biombioe.2007.10.00610.1016/j.biombioe.2007.10.006Search in Google Scholar
[21] Srivastava, A., & Prasad, R. (2000). Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews, 4, 111–133. DOI: 10.1016/S1364-0321(99)00013-1. http://dx.doi.org/10.1016/S1364-0321(99)00013-110.1016/S1364-0321(99)00013-1Search in Google Scholar
[22] Sharma, Y. C., Singh, B., & Upadhyay, S. N. (2008). Advancements in development and characterization of biodiesel: A review. Fuel, 87, 2355–2373. DOI: 10.1016/j.fuel.2008.01.014. http://dx.doi.org/10.1016/j.fuel.2008.01.01410.1016/j.fuel.2008.01.014Search in Google Scholar
[23] Wang, Y., Ou, S., Liu, P., Xue, F., & Tang, S. (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical, 252, 107–112. DOI: 10.1016/j.molcata.2006.02.047. http://dx.doi.org/10.1016/j.molcata.2006.02.04710.1016/j.molcata.2006.02.047Search in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Layered double hydroxides — multifunctional nanomaterials
- A novel reagent for spectroscopic determination of Mo(VI)
- Influence of chemical composition of nanocrystalline iron’s surface on the rates of two parallel reactions: nitriding and catalytic decomposition of ammonia
- Application of 2-(octylsulphanyl)benzoic acid as Pb2+ selective ionophore in hybrid membrane system
- Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water
- Treatment of acidic palm oil for fatty acid methyl esters production
- Synthesis, structure, and luminescent properties of two novel polynuclear complexes of 1,3-di(pyridin-2-yl)propane-1,3-dione
- Mixed-ligand complexes of boric acid with organic biomolecules
- Ultrasound-assisted rapid synthesis of β-aminoketones with direct-type catalytic Mannich reaction using bismuth(III) triflate in aqueous media at room temperature
- Design, synthesis, preliminary pharmacological evaluation, and docking studies of pyrazoline derivatives
- One-pot synthesis and luminescent spectra of 3-allyl substituted quinazoline-2,4-dione derivatives as allyl capping agents
Articles in the same Issue
- Layered double hydroxides — multifunctional nanomaterials
- A novel reagent for spectroscopic determination of Mo(VI)
- Influence of chemical composition of nanocrystalline iron’s surface on the rates of two parallel reactions: nitriding and catalytic decomposition of ammonia
- Application of 2-(octylsulphanyl)benzoic acid as Pb2+ selective ionophore in hybrid membrane system
- Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water
- Treatment of acidic palm oil for fatty acid methyl esters production
- Synthesis, structure, and luminescent properties of two novel polynuclear complexes of 1,3-di(pyridin-2-yl)propane-1,3-dione
- Mixed-ligand complexes of boric acid with organic biomolecules
- Ultrasound-assisted rapid synthesis of β-aminoketones with direct-type catalytic Mannich reaction using bismuth(III) triflate in aqueous media at room temperature
- Design, synthesis, preliminary pharmacological evaluation, and docking studies of pyrazoline derivatives
- One-pot synthesis and luminescent spectra of 3-allyl substituted quinazoline-2,4-dione derivatives as allyl capping agents