Home Life Sciences Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water
Article
Licensed
Unlicensed Requires Authentication

Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water

  • Yong-Juan Chang EMAIL logo , Zhi-Zhong Wang , Li-Gang Luo and Li-Yi Dai
Published/Copyright: November 16, 2011
Become an author with De Gruyter Brill

Abstract

We performed the Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water to study the reaction under high temperature conditions. The final product thus obtained was primarily 1-cyclohexen-1-ylethanone which was identified by GC-MS. The influences of reaction time, temperature, and initial reactant-to-water ratio on the yield of 1-cyclohexen-1-ylethanone were examined. The yield of 1-cyclohexen-1-ylethanone was 49 % in pure water at 260°C for a reaction time of 60 min. However, when additives such as ZnSO4, FeCl3, and NaHSO4, respectively, were introduced to the water to investigate the effect of salts on the Rupe rearrangement reaction, the yield increased markedly to as much as 88 % in 5 mole % NaHSO4 aqueous solution under the same conditions. The catalytic ability of the additives decreased in order: NaHSO4, FeCl3, ZnSO4. On the basis of these results, a possible reaction mechanism of the Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water was proposed.

[1] An, J., Bagnell, L., Cablewski, T., Strauss, C. R., & Trainor, R W. (1997). Applications of high-temperature aqueous media for synthetic organic reactions. Journal of Organic Chemistry, 62, 2505–2511. DOI: 10.1021/jo962115k. http://dx.doi.org/10.1021/jo962115k10.1021/jo962115kSearch in Google Scholar PubMed

[2] Anastas, P. T., & Warner, J. C. (1998). Green chemistry: Theory and practice. London, UK: Oxford University Press. Search in Google Scholar

[3] Ansell, M. F., Hancock, J. W., & Hickinbottom, W. J. (1956) The synthesis and reactions of branched-chain hydrocarbons Part X. The rearrangement of α-ethynyl alcohols to unsaturated carbonyl compounds. Journal of the Chemical Society, 192, 911–917. DOI: 10.1039/JR9560000911. 10.1039/JR9560000911Search in Google Scholar

[4] Connolly, J. F. (1966). Solubility of hydrocarbons in water near the critical solution temperatures. Journal of Chemical & Engineering Data, 11, 13–16. DOI: 10.1021/je60028a003. http://dx.doi.org/10.1021/je60028a00310.1021/je60028a003Search in Google Scholar

[5] Duan, P. G., Li, S., Yang, Y., Wang, Z. Z., & Dai, L. Y. (2009) Green medium for the hydrolysis of 5-cyanovaleramide Chemical Engineering & Technology, 32, 771–777. DOI: 10.1002/ceat.200800607. 10.1002/ceat.200800607Search in Google Scholar

[6] Fraga-Dubreuil, J., & Poliakoff, M. (2006). Organic reactions in high-temperature and supercritical water. Pure and Applied Chemistry, 78, 1971–1982. DOI: 10.1351/pac200678111971. http://dx.doi.org/10.1351/pac20067811197110.1351/pac200678111971Search in Google Scholar

[7] Fukuda, Y., Shiragami, H., Utimoto, K., & Nozaki, H. (1991) Synthesis of substituted furans by palladium-catalyzed cyclization of acetylenic ketones. Journal of Organic Chemistry, 56, 5816–5819. DOI: 10.1021/jo00020a024. http://dx.doi.org/10.1021/jo00020a02410.1021/jo00020a024Search in Google Scholar

[8] Fukuda, Y., & Utimoto, K. (1991). Effective transformation of unactivated alkynes into ketones or acetals with a gold(III) catalyst. Journal of Organic Chemistry, 56, 3729–3731. DOI: 10.1021/jo00011a058. http://dx.doi.org/10.1021/jo00011a05810.1021/jo00011a058Search in Google Scholar

[9] Hassner, A., & Stumer, C. (1994). Organic syntheses based on name reactions and unnamed reactions. Oxford, UK: Pergamon. Search in Google Scholar

[10] Jerome, K. S., & Parsons, E. J. (1993). Metal-catalyzed alkyne cyclotrimerizations in supercritical water. Organometallics, 12, 2991–2993. DOI: 10.1021/om00032a022. http://dx.doi.org/10.1021/om00032a02210.1021/om00032a022Search in Google Scholar

[11] Katritzky, A. R., Allin, S. M., & Siskin, M. (1996). Aquathermolysis: Reactions of organic compounds with superheated water. Accounts of Chemical Research, 29, 399–406. DOI: 10.1021/ar950144w. http://dx.doi.org/10.1021/ar950144w10.1021/ar950144wSearch in Google Scholar

[12] Katritzky, A. R., Luxem, F. J., & Siskin, M. (1990). Aqueous high-temperature chemistry of carbo- and heterocycles. 6 Monosubstituted benzenes with two carbon atom side chains unsubstituted or oxygenated at the α-position. Energy Fuels, 4, 518–524. DOI: 10.1021/ef00023a020. http://dx.doi.org/10.1021/ef00023a02010.1021/ef00023a020Search in Google Scholar

[13] Kruse, A., & Dinjus, E. (2007). Hot compressed water as reaction medium and reactant. Properties and synthesis reactions. Journal of Supercritical Fluids, 39, 362–380. DOI: 10.1016/j.supflu.2006.03.016. http://dx.doi.org/10.1016/j.supflu.2006.03.01610.1016/j.supflu.2006.03.016Search in Google Scholar

[14] Li, S., Chang, Y. J., Wang, Y., & Dai, L. Y. (2011). Research on hydration of phenylacetylene assisted with additives in nearcritical water. Chinese Chemical Letters, 22, 393–396. DOI: 10.1016/j.cclet.2010.11.003. http://dx.doi.org/10.1016/j.cclet.2010.11.00310.1016/j.cclet.2010.11.003Search in Google Scholar

[15] Marshall, W. L., & Franck, E. U. (1981). Ion product of water substance, 0–1000°C, 1–10,000 bars. New international formulation and its background. Journal of Physical and Chemical Reference Data, 10, 295–304. DOI: 10.1063/1.555643. http://dx.doi.org/10.1063/1.55564310.1063/1.555643Search in Google Scholar

[16] Parham, W. E., Wheeler, E. L., Dodson, R. M., & Fenton, S. W. (1954). The Rupe rearrangement of 2,6-dimethyl-2-carbethoxy-l-(phenylethynyl)-cyclohexanol (II) and 2,6-dimethyl-2-carbetoxy-l-(3-isopropylphenylethynyl)-cyclohexanol(III). Journal of the American Chemical Society, 76, 5380–5385. DOI: 10.1021/ja01650a038. http://dx.doi.org/10.1021/ja01650a03810.1021/ja01650a038Search in Google Scholar

[17] Parsons, E. J. (1996). Organic reactions in very hot water. ChemInform, 26, 30–34. DOI: 10.1002/chin.199643280. 10.1002/chin.199643280Search in Google Scholar

[18] Savage, P. E. (1999). Organic chemical reactions in supercritical water. Chemical Reviews, 99, 603–622. DOI: 10.1021/cr9700989. http://dx.doi.org/10.1021/cr970098910.1021/cr9700989Search in Google Scholar PubMed

[19] Simoneit, B. R. T. (1995). Evidence for organic synthesis in high temperature aqueous media — facts and prognosis. Origins of Life and Evolution of Biospheres, 25, 119–140. DOI: 10.1007/BF01581578. http://dx.doi.org/10.1007/BF0158157810.1007/BF01581578Search in Google Scholar PubMed

[20] Siskin, M., Brons, G., Vaughn, S. N., Katritzky, A. R., & Balasubramanian, M. (1990). Aqueous organic chemistry. 3 Aquathermolysis: reactivity of ethers and esters. Energy Fuels, 4, 488–492. DOI: 10.1021/ef00023a014. http://dx.doi.org/10.1021/ef00023a01410.1021/ef00023a014Search in Google Scholar

[21] Smissmann, E. E., Johnsen, R. H., Carlson, A. W., & Aycock, B. F. (1956). The acid-catalyzed rearrangement of phenylethynylcarbinols. Journal of the American Chemical Society, 78, 3395–3400. DOI: 10.1021/ja01595a036. http://dx.doi.org/10.1021/ja01595a03610.1021/ja01595a036Search in Google Scholar

[22] Swaminathan, S., & Narayanan, K. V. (1971). Rupe and Meyer-Schuster rearrangements. Chemical Reviews, 71, 429–438. DOI: 10.1021/cr60273a001. http://dx.doi.org/10.1021/cr60273a00110.1021/cr60273a001Search in Google Scholar

[23] Torry, L. A., Kaminsky, R., Klein, M. T., & Klotz, M. R (1992). The effect of salts on hydrolysis in supercritical and near-critical water: Reactivity and availability. The Journal of Supercritical Fluids, 5, 163–168. DOI: 10.1016/0896-8446(92)90003-3. http://dx.doi.org/10.1016/0896-8446(92)90003-310.1016/0896-8446(92)90003-3Search in Google Scholar

[24] Watanabe, M., Sato, T., Inomata, H., Smith, R. L., Jr., Arai, K., Kruse, A., & Dinjus, E. (2004). Chemical reactions of C1 compounds in near-critical and supercritical water. Chemical Reviews, 104, 5803–5822. DOI: 10.1021/cr020415y. http://dx.doi.org/10.1021/cr020415y10.1021/cr020415ySearch in Google Scholar PubMed

[25] Weingärtner, H., & Franck, E. U. (2005). Supercritical water as a soluvent. Angewandte Chemie International Edition, 44, 2672–2692. DOI: 10.1002/anie.200462468. http://dx.doi.org/10.1002/anie.20046246810.1002/anie.200462468Search in Google Scholar PubMed

Published Online: 2011-11-16
Published in Print: 2012-1-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0093-3/html
Scroll to top button